Metamath Proof Explorer


Theorem acsficl

Description: A closure in an algebraic closure system is the union of the closures of finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015)

Ref Expression
Hypothesis acsdrscl.f F=mrClsC
Assertion acsficl CACSXSXFS=F𝒫SFin

Proof

Step Hyp Ref Expression
1 acsdrscl.f F=mrClsC
2 fveq2 s=SFs=FS
3 pweq s=S𝒫s=𝒫S
4 3 ineq1d s=S𝒫sFin=𝒫SFin
5 4 imaeq2d s=SF𝒫sFin=F𝒫SFin
6 5 unieqd s=SF𝒫sFin=F𝒫SFin
7 2 6 eqeq12d s=SFs=F𝒫sFinFS=F𝒫SFin
8 isacs3lem CACSXCMooreXs𝒫CtoIncsDirsetsC
9 1 isacs4lem CMooreXs𝒫CtoIncsDirsetsCCMooreXt𝒫𝒫XtoInctDirsetFt=Ft
10 1 isacs5lem CMooreXt𝒫𝒫XtoInctDirsetFt=FtCMooreXs𝒫XFs=F𝒫sFin
11 8 9 10 3syl CACSXCMooreXs𝒫XFs=F𝒫sFin
12 11 simprd CACSXs𝒫XFs=F𝒫sFin
13 12 adantr CACSXSXs𝒫XFs=F𝒫sFin
14 elfvdm CACSXXdomACS
15 elpw2g XdomACSS𝒫XSX
16 14 15 syl CACSXS𝒫XSX
17 16 biimpar CACSXSXS𝒫X
18 7 13 17 rspcdva CACSXSXFS=F𝒫SFin