Metamath Proof Explorer


Theorem addasspi

Description: Addition of positive integers is associative. (Contributed by NM, 27-Aug-1995) (New usage is discouraged.)

Ref Expression
Assertion addasspi A+𝑵B+𝑵C=A+𝑵B+𝑵C

Proof

Step Hyp Ref Expression
1 pinn A𝑵Aω
2 pinn B𝑵Bω
3 pinn C𝑵Cω
4 nnaass AωBωCωA+𝑜B+𝑜C=A+𝑜B+𝑜C
5 1 2 3 4 syl3an A𝑵B𝑵C𝑵A+𝑜B+𝑜C=A+𝑜B+𝑜C
6 addclpi A𝑵B𝑵A+𝑵B𝑵
7 addpiord A+𝑵B𝑵C𝑵A+𝑵B+𝑵C=A+𝑵B+𝑜C
8 6 7 sylan A𝑵B𝑵C𝑵A+𝑵B+𝑵C=A+𝑵B+𝑜C
9 addpiord A𝑵B𝑵A+𝑵B=A+𝑜B
10 9 oveq1d A𝑵B𝑵A+𝑵B+𝑜C=A+𝑜B+𝑜C
11 10 adantr A𝑵B𝑵C𝑵A+𝑵B+𝑜C=A+𝑜B+𝑜C
12 8 11 eqtrd A𝑵B𝑵C𝑵A+𝑵B+𝑵C=A+𝑜B+𝑜C
13 12 3impa A𝑵B𝑵C𝑵A+𝑵B+𝑵C=A+𝑜B+𝑜C
14 addclpi B𝑵C𝑵B+𝑵C𝑵
15 addpiord A𝑵B+𝑵C𝑵A+𝑵B+𝑵C=A+𝑜B+𝑵C
16 14 15 sylan2 A𝑵B𝑵C𝑵A+𝑵B+𝑵C=A+𝑜B+𝑵C
17 addpiord B𝑵C𝑵B+𝑵C=B+𝑜C
18 17 oveq2d B𝑵C𝑵A+𝑜B+𝑵C=A+𝑜B+𝑜C
19 18 adantl A𝑵B𝑵C𝑵A+𝑜B+𝑵C=A+𝑜B+𝑜C
20 16 19 eqtrd A𝑵B𝑵C𝑵A+𝑵B+𝑵C=A+𝑜B+𝑜C
21 20 3impb A𝑵B𝑵C𝑵A+𝑵B+𝑵C=A+𝑜B+𝑜C
22 5 13 21 3eqtr4d A𝑵B𝑵C𝑵A+𝑵B+𝑵C=A+𝑵B+𝑵C
23 dmaddpi dom+𝑵=𝑵×𝑵
24 0npi ¬𝑵
25 23 24 ndmovass ¬A𝑵B𝑵C𝑵A+𝑵B+𝑵C=A+𝑵B+𝑵C
26 22 25 pm2.61i A+𝑵B+𝑵C=A+𝑵B+𝑵C