Metamath Proof Explorer


Theorem addmulmodb

Description: An integer plus a product is itself modulo a positive integer iff the product is divisible by the positive integer. (Contributed by AV, 8-Sep-2025)

Ref Expression
Assertion addmulmodb N A B C N B C A + B C mod N = A mod N

Proof

Step Hyp Ref Expression
1 simp1 A B C A
2 1 zcnd A B C A
3 2 adantl N A B C A
4 zmulcl B C B C
5 4 zcnd B C B C
6 5 3adant1 A B C B C
7 6 adantl N A B C B C
8 3 7 pncan2d N A B C A + B C - A = B C
9 8 eqcomd N A B C B C = A + B C - A
10 9 breq2d N A B C N B C N A + B C - A
11 simpl N A B C N
12 4 3adant1 A B C B C
13 1 12 zaddcld A B C A + B C
14 13 adantl N A B C A + B C
15 1 adantl N A B C A
16 moddvds N A + B C A A + B C mod N = A mod N N A + B C - A
17 11 14 15 16 syl3anc N A B C A + B C mod N = A mod N N A + B C - A
18 10 17 bitr4d N A B C N B C A + B C mod N = A mod N