Metamath Proof Explorer


Theorem addsid1

Description: Surreal addition to zero is identity. Part of Theorem 3 of Conway p. 17. (Contributed by Scott Fenton, 20-Aug-2024)

Ref Expression
Assertion addsid1 Could not format assertion : No typesetting found for |- ( A e. No -> ( A +s 0s ) = A ) with typecode |-

Proof

Step Hyp Ref Expression
1 oveq1 Could not format ( a = b -> ( a +s 0s ) = ( b +s 0s ) ) : No typesetting found for |- ( a = b -> ( a +s 0s ) = ( b +s 0s ) ) with typecode |-
2 id a = b a = b
3 1 2 eqeq12d Could not format ( a = b -> ( ( a +s 0s ) = a <-> ( b +s 0s ) = b ) ) : No typesetting found for |- ( a = b -> ( ( a +s 0s ) = a <-> ( b +s 0s ) = b ) ) with typecode |-
4 oveq1 Could not format ( a = A -> ( a +s 0s ) = ( A +s 0s ) ) : No typesetting found for |- ( a = A -> ( a +s 0s ) = ( A +s 0s ) ) with typecode |-
5 id a = A a = A
6 4 5 eqeq12d Could not format ( a = A -> ( ( a +s 0s ) = a <-> ( A +s 0s ) = A ) ) : No typesetting found for |- ( a = A -> ( ( a +s 0s ) = a <-> ( A +s 0s ) = A ) ) with typecode |-
7 0sno Could not format 0s e. No : No typesetting found for |- 0s e. No with typecode |-
8 addsval Could not format ( ( a e. No /\ 0s e. No ) -> ( a +s 0s ) = ( ( { x | E. y e. ( _L ` a ) x = ( y +s 0s ) } u. { z | E. y e. ( _L ` 0s ) z = ( a +s y ) } ) |s ( { x | E. w e. ( _R ` a ) x = ( w +s 0s ) } u. { z | E. w e. ( _R ` 0s ) z = ( a +s w ) } ) ) ) : No typesetting found for |- ( ( a e. No /\ 0s e. No ) -> ( a +s 0s ) = ( ( { x | E. y e. ( _L ` a ) x = ( y +s 0s ) } u. { z | E. y e. ( _L ` 0s ) z = ( a +s y ) } ) |s ( { x | E. w e. ( _R ` a ) x = ( w +s 0s ) } u. { z | E. w e. ( _R ` 0s ) z = ( a +s w ) } ) ) ) with typecode |-
9 7 8 mpan2 Could not format ( a e. No -> ( a +s 0s ) = ( ( { x | E. y e. ( _L ` a ) x = ( y +s 0s ) } u. { z | E. y e. ( _L ` 0s ) z = ( a +s y ) } ) |s ( { x | E. w e. ( _R ` a ) x = ( w +s 0s ) } u. { z | E. w e. ( _R ` 0s ) z = ( a +s w ) } ) ) ) : No typesetting found for |- ( a e. No -> ( a +s 0s ) = ( ( { x | E. y e. ( _L ` a ) x = ( y +s 0s ) } u. { z | E. y e. ( _L ` 0s ) z = ( a +s y ) } ) |s ( { x | E. w e. ( _R ` a ) x = ( w +s 0s ) } u. { z | E. w e. ( _R ` 0s ) z = ( a +s w ) } ) ) ) with typecode |-
10 9 adantr Could not format ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> ( a +s 0s ) = ( ( { x | E. y e. ( _L ` a ) x = ( y +s 0s ) } u. { z | E. y e. ( _L ` 0s ) z = ( a +s y ) } ) |s ( { x | E. w e. ( _R ` a ) x = ( w +s 0s ) } u. { z | E. w e. ( _R ` 0s ) z = ( a +s w ) } ) ) ) : No typesetting found for |- ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> ( a +s 0s ) = ( ( { x | E. y e. ( _L ` a ) x = ( y +s 0s ) } u. { z | E. y e. ( _L ` 0s ) z = ( a +s y ) } ) |s ( { x | E. w e. ( _R ` a ) x = ( w +s 0s ) } u. { z | E. w e. ( _R ` 0s ) z = ( a +s w ) } ) ) ) with typecode |-
11 elun1 y L a y L a R a
12 simpr Could not format ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) : No typesetting found for |- ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) with typecode |-
13 oveq1 Could not format ( b = y -> ( b +s 0s ) = ( y +s 0s ) ) : No typesetting found for |- ( b = y -> ( b +s 0s ) = ( y +s 0s ) ) with typecode |-
14 id b = y b = y
15 13 14 eqeq12d Could not format ( b = y -> ( ( b +s 0s ) = b <-> ( y +s 0s ) = y ) ) : No typesetting found for |- ( b = y -> ( ( b +s 0s ) = b <-> ( y +s 0s ) = y ) ) with typecode |-
16 15 rspcva Could not format ( ( y e. ( ( _L ` a ) u. ( _R ` a ) ) /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> ( y +s 0s ) = y ) : No typesetting found for |- ( ( y e. ( ( _L ` a ) u. ( _R ` a ) ) /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> ( y +s 0s ) = y ) with typecode |-
17 11 12 16 syl2anr Could not format ( ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) /\ y e. ( _L ` a ) ) -> ( y +s 0s ) = y ) : No typesetting found for |- ( ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) /\ y e. ( _L ` a ) ) -> ( y +s 0s ) = y ) with typecode |-
18 17 eqeq2d Could not format ( ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) /\ y e. ( _L ` a ) ) -> ( x = ( y +s 0s ) <-> x = y ) ) : No typesetting found for |- ( ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) /\ y e. ( _L ` a ) ) -> ( x = ( y +s 0s ) <-> x = y ) ) with typecode |-
19 equcom x = y y = x
20 18 19 bitrdi Could not format ( ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) /\ y e. ( _L ` a ) ) -> ( x = ( y +s 0s ) <-> y = x ) ) : No typesetting found for |- ( ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) /\ y e. ( _L ` a ) ) -> ( x = ( y +s 0s ) <-> y = x ) ) with typecode |-
21 20 rexbidva Could not format ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> ( E. y e. ( _L ` a ) x = ( y +s 0s ) <-> E. y e. ( _L ` a ) y = x ) ) : No typesetting found for |- ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> ( E. y e. ( _L ` a ) x = ( y +s 0s ) <-> E. y e. ( _L ` a ) y = x ) ) with typecode |-
22 risset x L a y L a y = x
23 21 22 bitr4di Could not format ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> ( E. y e. ( _L ` a ) x = ( y +s 0s ) <-> x e. ( _L ` a ) ) ) : No typesetting found for |- ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> ( E. y e. ( _L ` a ) x = ( y +s 0s ) <-> x e. ( _L ` a ) ) ) with typecode |-
24 23 abbi1dv Could not format ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> { x | E. y e. ( _L ` a ) x = ( y +s 0s ) } = ( _L ` a ) ) : No typesetting found for |- ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> { x | E. y e. ( _L ` a ) x = ( y +s 0s ) } = ( _L ` a ) ) with typecode |-
25 rex0 Could not format -. E. y e. (/) z = ( a +s y ) : No typesetting found for |- -. E. y e. (/) z = ( a +s y ) with typecode |-
26 left0s Could not format ( _L ` 0s ) = (/) : No typesetting found for |- ( _L ` 0s ) = (/) with typecode |-
27 26 rexeqi Could not format ( E. y e. ( _L ` 0s ) z = ( a +s y ) <-> E. y e. (/) z = ( a +s y ) ) : No typesetting found for |- ( E. y e. ( _L ` 0s ) z = ( a +s y ) <-> E. y e. (/) z = ( a +s y ) ) with typecode |-
28 25 27 mtbir Could not format -. E. y e. ( _L ` 0s ) z = ( a +s y ) : No typesetting found for |- -. E. y e. ( _L ` 0s ) z = ( a +s y ) with typecode |-
29 28 abf Could not format { z | E. y e. ( _L ` 0s ) z = ( a +s y ) } = (/) : No typesetting found for |- { z | E. y e. ( _L ` 0s ) z = ( a +s y ) } = (/) with typecode |-
30 29 a1i Could not format ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> { z | E. y e. ( _L ` 0s ) z = ( a +s y ) } = (/) ) : No typesetting found for |- ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> { z | E. y e. ( _L ` 0s ) z = ( a +s y ) } = (/) ) with typecode |-
31 24 30 uneq12d Could not format ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> ( { x | E. y e. ( _L ` a ) x = ( y +s 0s ) } u. { z | E. y e. ( _L ` 0s ) z = ( a +s y ) } ) = ( ( _L ` a ) u. (/) ) ) : No typesetting found for |- ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> ( { x | E. y e. ( _L ` a ) x = ( y +s 0s ) } u. { z | E. y e. ( _L ` 0s ) z = ( a +s y ) } ) = ( ( _L ` a ) u. (/) ) ) with typecode |-
32 un0 L a = L a
33 31 32 eqtrdi Could not format ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> ( { x | E. y e. ( _L ` a ) x = ( y +s 0s ) } u. { z | E. y e. ( _L ` 0s ) z = ( a +s y ) } ) = ( _L ` a ) ) : No typesetting found for |- ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> ( { x | E. y e. ( _L ` a ) x = ( y +s 0s ) } u. { z | E. y e. ( _L ` 0s ) z = ( a +s y ) } ) = ( _L ` a ) ) with typecode |-
34 elun2 w R a w L a R a
35 oveq1 Could not format ( b = w -> ( b +s 0s ) = ( w +s 0s ) ) : No typesetting found for |- ( b = w -> ( b +s 0s ) = ( w +s 0s ) ) with typecode |-
36 id b = w b = w
37 35 36 eqeq12d Could not format ( b = w -> ( ( b +s 0s ) = b <-> ( w +s 0s ) = w ) ) : No typesetting found for |- ( b = w -> ( ( b +s 0s ) = b <-> ( w +s 0s ) = w ) ) with typecode |-
38 37 rspcva Could not format ( ( w e. ( ( _L ` a ) u. ( _R ` a ) ) /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> ( w +s 0s ) = w ) : No typesetting found for |- ( ( w e. ( ( _L ` a ) u. ( _R ` a ) ) /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> ( w +s 0s ) = w ) with typecode |-
39 34 12 38 syl2anr Could not format ( ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) /\ w e. ( _R ` a ) ) -> ( w +s 0s ) = w ) : No typesetting found for |- ( ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) /\ w e. ( _R ` a ) ) -> ( w +s 0s ) = w ) with typecode |-
40 39 eqeq2d Could not format ( ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) /\ w e. ( _R ` a ) ) -> ( x = ( w +s 0s ) <-> x = w ) ) : No typesetting found for |- ( ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) /\ w e. ( _R ` a ) ) -> ( x = ( w +s 0s ) <-> x = w ) ) with typecode |-
41 equcom x = w w = x
42 40 41 bitrdi Could not format ( ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) /\ w e. ( _R ` a ) ) -> ( x = ( w +s 0s ) <-> w = x ) ) : No typesetting found for |- ( ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) /\ w e. ( _R ` a ) ) -> ( x = ( w +s 0s ) <-> w = x ) ) with typecode |-
43 42 rexbidva Could not format ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> ( E. w e. ( _R ` a ) x = ( w +s 0s ) <-> E. w e. ( _R ` a ) w = x ) ) : No typesetting found for |- ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> ( E. w e. ( _R ` a ) x = ( w +s 0s ) <-> E. w e. ( _R ` a ) w = x ) ) with typecode |-
44 risset x R a w R a w = x
45 43 44 bitr4di Could not format ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> ( E. w e. ( _R ` a ) x = ( w +s 0s ) <-> x e. ( _R ` a ) ) ) : No typesetting found for |- ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> ( E. w e. ( _R ` a ) x = ( w +s 0s ) <-> x e. ( _R ` a ) ) ) with typecode |-
46 45 abbi1dv Could not format ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> { x | E. w e. ( _R ` a ) x = ( w +s 0s ) } = ( _R ` a ) ) : No typesetting found for |- ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> { x | E. w e. ( _R ` a ) x = ( w +s 0s ) } = ( _R ` a ) ) with typecode |-
47 rex0 Could not format -. E. w e. (/) z = ( a +s w ) : No typesetting found for |- -. E. w e. (/) z = ( a +s w ) with typecode |-
48 right0s Could not format ( _R ` 0s ) = (/) : No typesetting found for |- ( _R ` 0s ) = (/) with typecode |-
49 48 rexeqi Could not format ( E. w e. ( _R ` 0s ) z = ( a +s w ) <-> E. w e. (/) z = ( a +s w ) ) : No typesetting found for |- ( E. w e. ( _R ` 0s ) z = ( a +s w ) <-> E. w e. (/) z = ( a +s w ) ) with typecode |-
50 47 49 mtbir Could not format -. E. w e. ( _R ` 0s ) z = ( a +s w ) : No typesetting found for |- -. E. w e. ( _R ` 0s ) z = ( a +s w ) with typecode |-
51 50 abf Could not format { z | E. w e. ( _R ` 0s ) z = ( a +s w ) } = (/) : No typesetting found for |- { z | E. w e. ( _R ` 0s ) z = ( a +s w ) } = (/) with typecode |-
52 51 a1i Could not format ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> { z | E. w e. ( _R ` 0s ) z = ( a +s w ) } = (/) ) : No typesetting found for |- ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> { z | E. w e. ( _R ` 0s ) z = ( a +s w ) } = (/) ) with typecode |-
53 46 52 uneq12d Could not format ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> ( { x | E. w e. ( _R ` a ) x = ( w +s 0s ) } u. { z | E. w e. ( _R ` 0s ) z = ( a +s w ) } ) = ( ( _R ` a ) u. (/) ) ) : No typesetting found for |- ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> ( { x | E. w e. ( _R ` a ) x = ( w +s 0s ) } u. { z | E. w e. ( _R ` 0s ) z = ( a +s w ) } ) = ( ( _R ` a ) u. (/) ) ) with typecode |-
54 un0 R a = R a
55 53 54 eqtrdi Could not format ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> ( { x | E. w e. ( _R ` a ) x = ( w +s 0s ) } u. { z | E. w e. ( _R ` 0s ) z = ( a +s w ) } ) = ( _R ` a ) ) : No typesetting found for |- ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> ( { x | E. w e. ( _R ` a ) x = ( w +s 0s ) } u. { z | E. w e. ( _R ` 0s ) z = ( a +s w ) } ) = ( _R ` a ) ) with typecode |-
56 33 55 oveq12d Could not format ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> ( ( { x | E. y e. ( _L ` a ) x = ( y +s 0s ) } u. { z | E. y e. ( _L ` 0s ) z = ( a +s y ) } ) |s ( { x | E. w e. ( _R ` a ) x = ( w +s 0s ) } u. { z | E. w e. ( _R ` 0s ) z = ( a +s w ) } ) ) = ( ( _L ` a ) |s ( _R ` a ) ) ) : No typesetting found for |- ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> ( ( { x | E. y e. ( _L ` a ) x = ( y +s 0s ) } u. { z | E. y e. ( _L ` 0s ) z = ( a +s y ) } ) |s ( { x | E. w e. ( _R ` a ) x = ( w +s 0s ) } u. { z | E. w e. ( _R ` 0s ) z = ( a +s w ) } ) ) = ( ( _L ` a ) |s ( _R ` a ) ) ) with typecode |-
57 lrcut a No L a | s R a = a
58 57 adantr Could not format ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> ( ( _L ` a ) |s ( _R ` a ) ) = a ) : No typesetting found for |- ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> ( ( _L ` a ) |s ( _R ` a ) ) = a ) with typecode |-
59 10 56 58 3eqtrd Could not format ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> ( a +s 0s ) = a ) : No typesetting found for |- ( ( a e. No /\ A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b ) -> ( a +s 0s ) = a ) with typecode |-
60 59 ex Could not format ( a e. No -> ( A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b -> ( a +s 0s ) = a ) ) : No typesetting found for |- ( a e. No -> ( A. b e. ( ( _L ` a ) u. ( _R ` a ) ) ( b +s 0s ) = b -> ( a +s 0s ) = a ) ) with typecode |-
61 3 6 60 noinds Could not format ( A e. No -> ( A +s 0s ) = A ) : No typesetting found for |- ( A e. No -> ( A +s 0s ) = A ) with typecode |-