Metamath Proof Explorer


Theorem aks4d1p8d1

Description: If a prime divides one number M , but not another number N , then it divides the quotient of M and the gcd of M and N . (Contributed by Thierry Arnoux, 10-Nov-2024)

Ref Expression
Hypotheses aks4d1p8d1.1 φ P
aks4d1p8d1.2 φ M
aks4d1p8d1.3 φ N
aks4d1p8d1.4 φ P M
aks4d1p8d1.5 φ ¬ P N
Assertion aks4d1p8d1 φ P M M gcd N

Proof

Step Hyp Ref Expression
1 aks4d1p8d1.1 φ P
2 aks4d1p8d1.2 φ M
3 aks4d1p8d1.3 φ N
4 aks4d1p8d1.4 φ P M
5 aks4d1p8d1.5 φ ¬ P N
6 prmnn P P
7 1 6 syl φ P
8 7 nnzd φ P
9 gcdnncl M N M gcd N
10 2 3 9 syl2anc φ M gcd N
11 10 nnzd φ M gcd N
12 2 nnzd φ M
13 5 intnand φ ¬ P M P N
14 3 nnzd φ N
15 dvdsgcdb P M N P M P N P M gcd N
16 8 12 14 15 syl3anc φ P M P N P M gcd N
17 13 16 mtbid φ ¬ P M gcd N
18 coprm P M gcd N ¬ P M gcd N P gcd M gcd N = 1
19 18 biimpa P M gcd N ¬ P M gcd N P gcd M gcd N = 1
20 1 11 17 19 syl21anc φ P gcd M gcd N = 1
21 gcddvds M N M gcd N M M gcd N N
22 12 14 21 syl2anc φ M gcd N M M gcd N N
23 22 simpld φ M gcd N M
24 8 11 12 20 4 23 coprmdvds2d φ P M gcd N M
25 7 10 2 nnproddivdvdsd φ P M gcd N M P M M gcd N
26 24 25 mpbid φ P M M gcd N