Metamath Proof Explorer


Theorem altopthsn

Description: Two alternate ordered pairs are equal iff the singletons of their respective elements are equal. Note that this holds regardless of sethood of any of the elements. (Contributed by Scott Fenton, 16-Apr-2012)

Ref Expression
Assertion altopthsn AB=CDA=CB=D

Proof

Step Hyp Ref Expression
1 df-altop AB=AAB
2 df-altop CD=CCD
3 1 2 eqeq12i AB=CDAAB=CCD
4 snex AV
5 prex ABV
6 snex CV
7 prex CDV
8 4 5 6 7 preq12b AAB=CCDA=CAB=CDA=CDAB=C
9 simpl A=CAB=CDA=C
10 snsspr1 AAB
11 sseq2 AB=CAABAC
12 10 11 mpbii AB=CAC
13 12 adantl A=CDAB=CAC
14 snsspr1 CCD
15 sseq2 A=CDCACCD
16 14 15 mpbiri A=CDCA
17 16 adantr A=CDAB=CCA
18 13 17 eqssd A=CDAB=CA=C
19 9 18 jaoi A=CAB=CDA=CDAB=CA=C
20 8 19 sylbi AAB=CCDA=C
21 uneq1 A=CAB=CB
22 df-pr AB=AB
23 df-pr CB=CB
24 21 22 23 3eqtr4g A=CAB=CB
25 24 preq2d A=CAAB=ACB
26 preq1 A=CACB=CCB
27 25 26 eqtrd A=CAAB=CCB
28 27 eqeq1d A=CAAB=CCDCCB=CCD
29 28 biimpd A=CAAB=CCDCCB=CCD
30 prex CBV
31 30 7 preqr2 CCB=CCDCB=CD
32 snex BV
33 snex DV
34 32 33 preqr2 CB=CDB=D
35 31 34 syl CCB=CCDB=D
36 29 35 syl6com AAB=CCDA=CB=D
37 20 36 jcai AAB=CCDA=CB=D
38 preq2 B=DCB=CD
39 38 preq2d B=DCCB=CCD
40 27 39 sylan9eq A=CB=DAAB=CCD
41 37 40 impbii AAB=CCDA=CB=D
42 3 41 bitri AB=CDA=CB=D