Description: An inclusion rule for alternate Cartesian products. (Contributed by Scott Fenton, 24-Mar-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | altxpsspw | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elaltxp | |
|
2 | df-altop | |
|
3 | snssi | |
|
4 | ssun3 | |
|
5 | 3 4 | syl | |
6 | 5 | adantr | |
7 | elun1 | |
|
8 | snssi | |
|
9 | vsnex | |
|
10 | 9 | elpw | |
11 | elun2 | |
|
12 | 10 11 | sylbir | |
13 | 8 12 | syl | |
14 | 7 13 | anim12i | |
15 | vex | |
|
16 | 15 9 | prss | |
17 | 14 16 | sylib | |
18 | prex | |
|
19 | 18 | elpw | |
20 | vsnex | |
|
21 | prex | |
|
22 | 20 21 | prsspw | |
23 | 19 22 | bitri | |
24 | 6 17 23 | sylanbrc | |
25 | 2 24 | eqeltrid | |
26 | eleq1a | |
|
27 | 25 26 | syl | |
28 | 27 | rexlimivv | |
29 | 1 28 | sylbi | |
30 | 29 | ssriv | |