Metamath Proof Explorer


Theorem altxpsspw

Description: An inclusion rule for alternate Cartesian products. (Contributed by Scott Fenton, 24-Mar-2012)

Ref Expression
Assertion altxpsspw A××B𝒫𝒫A𝒫B

Proof

Step Hyp Ref Expression
1 elaltxp zA××BxAyBz=xy
2 df-altop xy=xxy
3 snssi xAxA
4 ssun3 xAxA𝒫B
5 3 4 syl xAxA𝒫B
6 5 adantr xAyBxA𝒫B
7 elun1 xAxA𝒫B
8 snssi yByB
9 vsnex yV
10 9 elpw y𝒫ByB
11 elun2 y𝒫ByA𝒫B
12 10 11 sylbir yByA𝒫B
13 8 12 syl yByA𝒫B
14 7 13 anim12i xAyBxA𝒫ByA𝒫B
15 vex xV
16 15 9 prss xA𝒫ByA𝒫BxyA𝒫B
17 14 16 sylib xAyBxyA𝒫B
18 prex xxyV
19 18 elpw xxy𝒫𝒫A𝒫Bxxy𝒫A𝒫B
20 vsnex xV
21 prex xyV
22 20 21 prsspw xxy𝒫A𝒫BxA𝒫BxyA𝒫B
23 19 22 bitri xxy𝒫𝒫A𝒫BxA𝒫BxyA𝒫B
24 6 17 23 sylanbrc xAyBxxy𝒫𝒫A𝒫B
25 2 24 eqeltrid xAyBxy𝒫𝒫A𝒫B
26 eleq1a xy𝒫𝒫A𝒫Bz=xyz𝒫𝒫A𝒫B
27 25 26 syl xAyBz=xyz𝒫𝒫A𝒫B
28 27 rexlimivv xAyBz=xyz𝒫𝒫A𝒫B
29 1 28 sylbi zA××Bz𝒫𝒫A𝒫B
30 29 ssriv A××B𝒫𝒫A𝒫B