Description: The scalar 0 embedded into a left module corresponds to the 0 of the left module if the left module is also a ring. (Contributed by AV, 31-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ascl0.a | |
|
ascl0.f | |
||
ascl0.l | |
||
ascl0.r | |
||
Assertion | ascl0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ascl0.a | |
|
2 | ascl0.f | |
|
3 | ascl0.l | |
|
4 | ascl0.r | |
|
5 | 2 | lmodfgrp | |
6 | 3 5 | syl | |
7 | eqid | |
|
8 | eqid | |
|
9 | 7 8 | grpidcl | |
10 | 6 9 | syl | |
11 | eqid | |
|
12 | eqid | |
|
13 | 1 2 7 11 12 | asclval | |
14 | 10 13 | syl | |
15 | eqid | |
|
16 | 15 12 | ringidcl | |
17 | 4 16 | syl | |
18 | eqid | |
|
19 | 15 2 11 8 18 | lmod0vs | |
20 | 3 17 19 | syl2anc | |
21 | 14 20 | eqtrd | |