Step |
Hyp |
Ref |
Expression |
1 |
|
assafld.k |
|
2 |
|
assafld.a |
|
3 |
|
assafld.1 |
|
4 |
|
assafld.2 |
|
5 |
|
assafld.3 |
|
6 |
3
|
idomringd |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
7 8
|
unitss |
|
10 |
9
|
a1i |
|
11 |
|
eqid |
|
12 |
3
|
idomdomd |
|
13 |
|
domnnzr |
|
14 |
12 13
|
syl |
|
15 |
14
|
adantr |
|
16 |
|
simpr |
|
17 |
8 11 15 16
|
unitnz |
|
18 |
|
neirr |
|
19 |
18
|
a1i |
|
20 |
17 19
|
pm2.65da |
|
21 |
|
ssdifsn |
|
22 |
10 20 21
|
sylanbrc |
|
23 |
|
eqid |
|
24 |
2
|
adantr |
|
25 |
4
|
adantr |
|
26 |
5
|
adantr |
|
27 |
12
|
adantr |
|
28 |
|
simpr |
|
29 |
28
|
eldifad |
|
30 |
|
eldifsni |
|
31 |
28 30
|
syl |
|
32 |
7 23 11
|
domnrrg |
|
33 |
27 29 31 32
|
syl3anc |
|
34 |
23 8 1 24 25 26 33
|
assarrginv |
|
35 |
22 34
|
eqelssd |
|
36 |
7 8 11
|
isdrng |
|
37 |
6 35 36
|
sylanbrc |
|
38 |
3
|
idomcringd |
|
39 |
|
isfld |
|
40 |
37 38 39
|
sylanbrc |
|