Description: Two ways of saying a relation is antisymmetric and reflexive. U. U. R is the field of a relation by relfld . (Contributed by NM, 6-May-2008) (Proof shortened by Andrew Salmon, 27-Aug-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | asymref | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br | |
|
2 | vex | |
|
3 | vex | |
|
4 | 2 3 | opeluu | |
5 | 1 4 | sylbi | |
6 | 5 | simpld | |
7 | 6 | adantr | |
8 | 7 | pm4.71ri | |
9 | 8 | bibi1i | |
10 | elin | |
|
11 | 2 3 | brcnv | |
12 | df-br | |
|
13 | 11 12 | bitr3i | |
14 | 1 13 | anbi12i | |
15 | 10 14 | bitr4i | |
16 | 3 | opelresi | |
17 | df-br | |
|
18 | 3 | ideq | |
19 | 17 18 | bitr3i | |
20 | 19 | anbi2i | |
21 | 16 20 | bitri | |
22 | 15 21 | bibi12i | |
23 | pm5.32 | |
|
24 | 9 22 23 | 3bitr4i | |
25 | 24 | albii | |
26 | 19.21v | |
|
27 | 25 26 | bitri | |
28 | 27 | albii | |
29 | relcnv | |
|
30 | relin2 | |
|
31 | 29 30 | ax-mp | |
32 | relres | |
|
33 | eqrel | |
|
34 | 31 32 33 | mp2an | |
35 | df-ral | |
|
36 | 28 34 35 | 3bitr4i | |