Metamath Proof Explorer


Theorem atanbnd

Description: The arctangent function is bounded by _pi / 2 on the reals. (Contributed by Mario Carneiro, 5-Apr-2015)

Ref Expression
Assertion atanbnd AarctanAπ2π2

Proof

Step Hyp Ref Expression
1 atanre AAdomarctan
2 1 adantr AA<0Adomarctan
3 atanneg AdomarctanarctanA=arctanA
4 2 3 syl AA<0arctanA=arctanA
5 renegcl AA
6 5 adantr AA<0A
7 lt0neg1 AA<00<A
8 7 biimpa AA<00<A
9 6 8 elrpd AA<0A+
10 atanbndlem A+arctanAπ2π2
11 9 10 syl AA<0arctanAπ2π2
12 4 11 eqeltrrd AA<0arctanAπ2π2
13 halfpire π2
14 13 recni π2
15 14 negnegi π2=π2
16 15 oveq2i π2π2=π2π2
17 12 16 eleqtrrdi AA<0arctanAπ2π2
18 neghalfpire π2
19 atanrecl AarctanA
20 19 adantr AA<0arctanA
21 iooneg π2π2arctanAarctanAπ2π2arctanAπ2π2
22 18 13 20 21 mp3an12i AA<0arctanAπ2π2arctanAπ2π2
23 17 22 mpbird AA<0arctanAπ2π2
24 simpr AA=0A=0
25 24 fveq2d AA=0arctanA=arctan0
26 atan0 arctan0=0
27 25 26 eqtrdi AA=0arctanA=0
28 0re 0
29 pirp π+
30 rphalfcl π+π2+
31 rpgt0 π2+0<π2
32 29 30 31 mp2b 0<π2
33 lt0neg2 π20<π2π2<0
34 13 33 ax-mp 0<π2π2<0
35 32 34 mpbi π2<0
36 18 rexri π2*
37 13 rexri π2*
38 elioo2 π2*π2*0π2π20π2<00<π2
39 36 37 38 mp2an 0π2π20π2<00<π2
40 28 35 32 39 mpbir3an 0π2π2
41 27 40 eqeltrdi AA=0arctanAπ2π2
42 elrp A+A0<A
43 atanbndlem A+arctanAπ2π2
44 42 43 sylbir A0<AarctanAπ2π2
45 lttri4 A0A<0A=00<A
46 28 45 mpan2 AA<0A=00<A
47 23 41 44 46 mpjao3dan AarctanAπ2π2