Metamath Proof Explorer


Theorem atandm2

Description: This form of atandm is a bit more useful for showing that the logarithms in df-atan are well-defined. (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Assertion atandm2 AdomarctanA1iA01+iA0

Proof

Step Hyp Ref Expression
1 atandm AdomarctanAAiAi
2 3anass A1iA01+iA0A1iA01+iA0
3 ax-1cn 1
4 ax-icn i
5 mulcl iAiA
6 4 5 mpan AiA
7 subeq0 1iA1iA=01=iA
8 3 6 7 sylancr A1iA=01=iA
9 4 4 mulneg2i ii=ii
10 ixi ii=1
11 10 negeqi ii=-1
12 negneg1e1 -1=1
13 9 11 12 3eqtri ii=1
14 13 eqeq2i iA=iiiA=1
15 eqcom iA=11=iA
16 14 15 bitri iA=ii1=iA
17 8 16 bitr4di A1iA=0iA=ii
18 id AA
19 4 negcli i
20 19 a1i Ai
21 4 a1i Ai
22 ine0 i0
23 22 a1i Ai0
24 18 20 21 23 mulcand AiA=iiA=i
25 17 24 bitrd A1iA=0A=i
26 25 necon3bid A1iA0Ai
27 addcom 1iA1+iA=iA+1
28 3 6 27 sylancr A1+iA=iA+1
29 subneg iA1iA-1=iA+1
30 6 3 29 sylancl AiA-1=iA+1
31 28 30 eqtr4d A1+iA=iA-1
32 31 eqeq1d A1+iA=0iA-1=0
33 3 negcli 1
34 subeq0 iA1iA-1=0iA=1
35 6 33 34 sylancl AiA-1=0iA=1
36 32 35 bitrd A1+iA=0iA=1
37 10 eqeq2i iA=iiiA=1
38 36 37 bitr4di A1+iA=0iA=ii
39 18 21 21 23 mulcand AiA=iiA=i
40 38 39 bitrd A1+iA=0A=i
41 40 necon3bid A1+iA0Ai
42 26 41 anbi12d A1iA01+iA0AiAi
43 42 pm5.32i A1iA01+iA0AAiAi
44 3anass AAiAiAAiAi
45 43 44 bitr4i A1iA01+iA0AAiAi
46 2 45 bitri A1iA01+iA0AAiAi
47 1 46 bitr4i AdomarctanA1iA01+iA0