Description: The tangent function has range contained in the domain of the arctangent. (Contributed by Mario Carneiro, 31-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | atandmtan | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tancl | |
|
2 | tanval | |
|
3 | 2 | oveq1d | |
4 | sincl | |
|
5 | 4 | adantr | |
6 | coscl | |
|
7 | 6 | adantr | |
8 | simpr | |
|
9 | 5 7 8 | sqdivd | |
10 | 3 9 | eqtrd | |
11 | 5 | sqcld | |
12 | 7 | sqcld | |
13 | 12 | negcld | |
14 | 11 12 | subnegd | |
15 | sincossq | |
|
16 | 15 | adantr | |
17 | 14 16 | eqtrd | |
18 | ax-1ne0 | |
|
19 | 18 | a1i | |
20 | 17 19 | eqnetrd | |
21 | 11 13 20 | subne0ad | |
22 | 12 | mulm1d | |
23 | 21 22 | neeqtrrd | |
24 | neg1cn | |
|
25 | 24 | a1i | |
26 | sqne0 | |
|
27 | 6 26 | syl | |
28 | 27 | biimpar | |
29 | 11 25 12 28 | divmul3d | |
30 | 29 | necon3bid | |
31 | 23 30 | mpbird | |
32 | 10 31 | eqnetrd | |
33 | atandm3 | |
|
34 | 1 32 33 | sylanbrc | |