Metamath Proof Explorer


Theorem atandmtan

Description: The tangent function has range contained in the domain of the arctangent. (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Assertion atandmtan AcosA0tanAdomarctan

Proof

Step Hyp Ref Expression
1 tancl AcosA0tanA
2 tanval AcosA0tanA=sinAcosA
3 2 oveq1d AcosA0tanA2=sinAcosA2
4 sincl AsinA
5 4 adantr AcosA0sinA
6 coscl AcosA
7 6 adantr AcosA0cosA
8 simpr AcosA0cosA0
9 5 7 8 sqdivd AcosA0sinAcosA2=sinA2cosA2
10 3 9 eqtrd AcosA0tanA2=sinA2cosA2
11 5 sqcld AcosA0sinA2
12 7 sqcld AcosA0cosA2
13 12 negcld AcosA0cosA2
14 11 12 subnegd AcosA0sinA2cosA2=sinA2+cosA2
15 sincossq AsinA2+cosA2=1
16 15 adantr AcosA0sinA2+cosA2=1
17 14 16 eqtrd AcosA0sinA2cosA2=1
18 ax-1ne0 10
19 18 a1i AcosA010
20 17 19 eqnetrd AcosA0sinA2cosA20
21 11 13 20 subne0ad AcosA0sinA2cosA2
22 12 mulm1d AcosA0-1cosA2=cosA2
23 21 22 neeqtrrd AcosA0sinA2-1cosA2
24 neg1cn 1
25 24 a1i AcosA01
26 sqne0 cosAcosA20cosA0
27 6 26 syl AcosA20cosA0
28 27 biimpar AcosA0cosA20
29 11 25 12 28 divmul3d AcosA0sinA2cosA2=1sinA2=-1cosA2
30 29 necon3bid AcosA0sinA2cosA21sinA2-1cosA2
31 23 30 mpbird AcosA0sinA2cosA21
32 10 31 eqnetrd AcosA0tanA21
33 atandm3 tanAdomarctantanAtanA21
34 1 32 33 sylanbrc AcosA0tanAdomarctan