Metamath Proof Explorer


Theorem atandmtan

Description: The tangent function has range contained in the domain of the arctangent. (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Assertion atandmtan A cos A 0 tan A dom arctan

Proof

Step Hyp Ref Expression
1 tancl A cos A 0 tan A
2 tanval A cos A 0 tan A = sin A cos A
3 2 oveq1d A cos A 0 tan A 2 = sin A cos A 2
4 sincl A sin A
5 4 adantr A cos A 0 sin A
6 coscl A cos A
7 6 adantr A cos A 0 cos A
8 simpr A cos A 0 cos A 0
9 5 7 8 sqdivd A cos A 0 sin A cos A 2 = sin A 2 cos A 2
10 3 9 eqtrd A cos A 0 tan A 2 = sin A 2 cos A 2
11 5 sqcld A cos A 0 sin A 2
12 7 sqcld A cos A 0 cos A 2
13 12 negcld A cos A 0 cos A 2
14 11 12 subnegd A cos A 0 sin A 2 cos A 2 = sin A 2 + cos A 2
15 sincossq A sin A 2 + cos A 2 = 1
16 15 adantr A cos A 0 sin A 2 + cos A 2 = 1
17 14 16 eqtrd A cos A 0 sin A 2 cos A 2 = 1
18 ax-1ne0 1 0
19 18 a1i A cos A 0 1 0
20 17 19 eqnetrd A cos A 0 sin A 2 cos A 2 0
21 11 13 20 subne0ad A cos A 0 sin A 2 cos A 2
22 12 mulm1d A cos A 0 -1 cos A 2 = cos A 2
23 21 22 neeqtrrd A cos A 0 sin A 2 -1 cos A 2
24 neg1cn 1
25 24 a1i A cos A 0 1
26 sqne0 cos A cos A 2 0 cos A 0
27 6 26 syl A cos A 2 0 cos A 0
28 27 biimpar A cos A 0 cos A 2 0
29 11 25 12 28 divmul3d A cos A 0 sin A 2 cos A 2 = 1 sin A 2 = -1 cos A 2
30 29 necon3bid A cos A 0 sin A 2 cos A 2 1 sin A 2 -1 cos A 2
31 23 30 mpbird A cos A 0 sin A 2 cos A 2 1
32 10 31 eqnetrd A cos A 0 tan A 2 1
33 atandm3 tan A dom arctan tan A tan A 2 1
34 1 32 33 sylanbrc A cos A 0 tan A dom arctan