Metamath Proof Explorer


Theorem atlrelat1

Description: An atomistic lattice with 0 is relatively atomic. Part of Lemma 7.2 of MaedaMaeda p. 30. ( chpssati , with /\ swapped, analog.) (Contributed by NM, 4-Dec-2011)

Ref Expression
Hypotheses atlrelat1.b B=BaseK
atlrelat1.l ˙=K
atlrelat1.s <˙=<K
atlrelat1.a A=AtomsK
Assertion atlrelat1 KOMLKCLatKAtLatXBYBX<˙YpA¬p˙Xp˙Y

Proof

Step Hyp Ref Expression
1 atlrelat1.b B=BaseK
2 atlrelat1.l ˙=K
3 atlrelat1.s <˙=<K
4 atlrelat1.a A=AtomsK
5 simp13 KOMLKCLatKAtLatXBYBKAtLat
6 atlpos KAtLatKPoset
7 5 6 syl KOMLKCLatKAtLatXBYBKPoset
8 1 2 3 pltnle KPosetXBYBX<˙Y¬Y˙X
9 8 ex KPosetXBYBX<˙Y¬Y˙X
10 7 9 syld3an1 KOMLKCLatKAtLatXBYBX<˙Y¬Y˙X
11 iman p˙Yp˙X¬p˙Y¬p˙X
12 ancom p˙Y¬p˙X¬p˙Xp˙Y
13 11 12 xchbinx p˙Yp˙X¬¬p˙Xp˙Y
14 13 ralbii pAp˙Yp˙XpA¬¬p˙Xp˙Y
15 1 2 4 atlatle KOMLKCLatKAtLatYBXBY˙XpAp˙Yp˙X
16 15 3com23 KOMLKCLatKAtLatXBYBY˙XpAp˙Yp˙X
17 16 biimprd KOMLKCLatKAtLatXBYBpAp˙Yp˙XY˙X
18 14 17 biimtrrid KOMLKCLatKAtLatXBYBpA¬¬p˙Xp˙YY˙X
19 18 con3d KOMLKCLatKAtLatXBYB¬Y˙X¬pA¬¬p˙Xp˙Y
20 dfrex2 pA¬p˙Xp˙Y¬pA¬¬p˙Xp˙Y
21 19 20 syl6ibr KOMLKCLatKAtLatXBYB¬Y˙XpA¬p˙Xp˙Y
22 10 21 syld KOMLKCLatKAtLatXBYBX<˙YpA¬p˙Xp˙Y