Metamath Proof Explorer


Theorem atlatle

Description: The ordering of two Hilbert lattice elements is determined by the atoms under them. ( chrelat3 analog.) (Contributed by NM, 5-Nov-2012)

Ref Expression
Hypotheses atlatle.b B=BaseK
atlatle.l ˙=K
atlatle.a A=AtomsK
Assertion atlatle KOMLKCLatKAtLatXBYBX˙YpAp˙Xp˙Y

Proof

Step Hyp Ref Expression
1 atlatle.b B=BaseK
2 atlatle.l ˙=K
3 atlatle.a A=AtomsK
4 simpl13 KOMLKCLatKAtLatXBYBpAKAtLat
5 atlpos KAtLatKPoset
6 4 5 syl KOMLKCLatKAtLatXBYBpAKPoset
7 1 3 atbase pApB
8 7 adantl KOMLKCLatKAtLatXBYBpApB
9 simpl2 KOMLKCLatKAtLatXBYBpAXB
10 simpl3 KOMLKCLatKAtLatXBYBpAYB
11 1 2 postr KPosetpBXBYBp˙XX˙Yp˙Y
12 6 8 9 10 11 syl13anc KOMLKCLatKAtLatXBYBpAp˙XX˙Yp˙Y
13 12 expcomd KOMLKCLatKAtLatXBYBpAX˙Yp˙Xp˙Y
14 13 ralrimdva KOMLKCLatKAtLatXBYBX˙YpAp˙Xp˙Y
15 ss2rab pA|p˙XpA|p˙YpAp˙Xp˙Y
16 simpl12 KOMLKCLatKAtLatXBYBpA|p˙XpA|p˙YKCLat
17 ssrab2 pA|p˙YA
18 1 3 atssbase AB
19 17 18 sstri pA|p˙YB
20 eqid lubK=lubK
21 1 2 20 lubss KCLatpA|p˙YBpA|p˙XpA|p˙YlubKpA|p˙X˙lubKpA|p˙Y
22 19 21 mp3an2 KCLatpA|p˙XpA|p˙YlubKpA|p˙X˙lubKpA|p˙Y
23 16 22 sylancom KOMLKCLatKAtLatXBYBpA|p˙XpA|p˙YlubKpA|p˙X˙lubKpA|p˙Y
24 23 ex KOMLKCLatKAtLatXBYBpA|p˙XpA|p˙YlubKpA|p˙X˙lubKpA|p˙Y
25 1 2 20 3 atlatmstc KOMLKCLatKAtLatXBlubKpA|p˙X=X
26 25 3adant3 KOMLKCLatKAtLatXBYBlubKpA|p˙X=X
27 1 2 20 3 atlatmstc KOMLKCLatKAtLatYBlubKpA|p˙Y=Y
28 27 3adant2 KOMLKCLatKAtLatXBYBlubKpA|p˙Y=Y
29 26 28 breq12d KOMLKCLatKAtLatXBYBlubKpA|p˙X˙lubKpA|p˙YX˙Y
30 24 29 sylibd KOMLKCLatKAtLatXBYBpA|p˙XpA|p˙YX˙Y
31 15 30 biimtrrid KOMLKCLatKAtLatXBYBpAp˙Xp˙YX˙Y
32 14 31 impbid KOMLKCLatKAtLatXBYBX˙YpAp˙Xp˙Y