Description: Lemma for the Axiom of Power Sets with no distinct variable conditions. Revised to remove a redundant antecedent from the consequence. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 4-Jan-2002) (Proof shortened by Mario Carneiro, 6-Dec-2016) (Revised and shortened by Wolf Lammen, 9-Jun-2019.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | axpowndlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfpow | |
|
2 | 19.8a | |
|
3 | sp | |
|
4 | 2 3 | imim12i | |
5 | 4 | alimi | |
6 | 5 | imim1i | |
7 | 6 | alimi | |
8 | 1 7 | eximii | |
9 | nfnae | |
|
10 | nfnae | |
|
11 | 9 10 | nfan | |
12 | nfnae | |
|
13 | nfnae | |
|
14 | 12 13 | nfan | |
15 | nfv | |
|
16 | nfnae | |
|
17 | nfcvd | |
|
18 | nfcvf | |
|
19 | 17 18 | nfeld | |
20 | 16 19 | nfexd | |
21 | 20 | adantr | |
22 | nfcvd | |
|
23 | nfcvf | |
|
24 | 22 23 | nfeld | |
25 | 13 24 | nfald | |
26 | 25 | adantl | |
27 | 21 26 | nfimd | |
28 | 15 27 | nfald | |
29 | 18 17 | nfeld | |
30 | 29 | adantr | |
31 | 28 30 | nfimd | |
32 | 14 31 | nfald | |
33 | nfeqf2 | |
|
34 | 33 | naecoms | |
35 | 34 | adantr | |
36 | 14 35 | nfan1 | |
37 | nfnae | |
|
38 | nfeqf2 | |
|
39 | 38 | naecoms | |
40 | 37 39 | nfan1 | |
41 | elequ1 | |
|
42 | 41 | adantl | |
43 | 40 42 | exbid | |
44 | 43 | adantll | |
45 | 12 34 | nfan1 | |
46 | elequ1 | |
|
47 | 46 | adantl | |
48 | 45 47 | albid | |
49 | 48 | adantlr | |
50 | 44 49 | imbi12d | |
51 | 50 | ex | |
52 | 11 27 51 | cbvald | |
53 | 52 | adantr | |
54 | elequ2 | |
|
55 | 54 | adantl | |
56 | 53 55 | imbi12d | |
57 | 36 56 | albid | |
58 | 57 | ex | |
59 | 11 32 58 | cbvexd | |
60 | 8 59 | mpbii | |
61 | 60 | ex | |