Metamath Proof Explorer


Theorem axrepndlem1

Description: Lemma for the Axiom of Replacement with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 2-Jan-2002) (New usage is discouraged.)

Ref Expression
Assertion axrepndlem1 ¬yy=zxyzφz=yzzxxxyyφ

Proof

Step Hyp Ref Expression
1 axrep2 xywwzφw=ywwxxxyywzφ
2 nfnae x¬yy=z
3 nfnae y¬yy=z
4 nfnae z¬yy=z
5 nfs1v zwzφ
6 5 a1i ¬yy=zzwzφ
7 nfcvd ¬yy=z_zw
8 nfcvf2 ¬yy=z_zy
9 7 8 nfeqd ¬yy=zzw=y
10 6 9 nfimd ¬yy=zzwzφw=y
11 sbequ12r w=zwzφφ
12 equequ1 w=zw=yz=y
13 11 12 imbi12d w=zwzφw=yφz=y
14 13 a1i ¬yy=zw=zwzφw=yφz=y
15 4 10 14 cbvald ¬yy=zwwzφw=yzφz=y
16 3 15 exbid ¬yy=zywwzφw=yyzφz=y
17 nfvd ¬yy=zzwx
18 8 nfcrd ¬yy=zzxy
19 3 6 nfald ¬yy=zzywzφ
20 18 19 nfand ¬yy=zzxyywzφ
21 2 20 nfexd ¬yy=zzxxyywzφ
22 17 21 nfbid ¬yy=zzwxxxyywzφ
23 elequ1 w=zwxzx
24 23 adantl ¬yy=zw=zwxzx
25 nfeqf2 ¬yy=zyw=z
26 3 25 nfan1 y¬yy=zw=z
27 11 adantl ¬yy=zw=zwzφφ
28 26 27 albid ¬yy=zw=zywzφyφ
29 28 anbi2d ¬yy=zw=zxyywzφxyyφ
30 29 exbidv ¬yy=zw=zxxyywzφxxyyφ
31 24 30 bibi12d ¬yy=zw=zwxxxyywzφzxxxyyφ
32 31 ex ¬yy=zw=zwxxxyywzφzxxxyyφ
33 4 22 32 cbvald ¬yy=zwwxxxyywzφzzxxxyyφ
34 16 33 imbi12d ¬yy=zywwzφw=ywwxxxyywzφyzφz=yzzxxxyyφ
35 2 34 exbid ¬yy=zxywwzφw=ywwxxxyywzφxyzφz=yzzxxxyyφ
36 1 35 mpbii ¬yy=zxyzφz=yzzxxxyyφ