Metamath Proof Explorer


Theorem axsegconlem7

Description: Lemma for axsegcon . Show that a particular ratio of distances is in the closed unit interval. (Contributed by Scott Fenton, 18-Sep-2013)

Ref Expression
Hypotheses axsegconlem2.1 S = p = 1 N A p B p 2
axsegconlem7.2 T = p = 1 N C p D p 2
Assertion axsegconlem7 A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N S S + T 0 1

Proof

Step Hyp Ref Expression
1 axsegconlem2.1 S = p = 1 N A p B p 2
2 axsegconlem7.2 T = p = 1 N C p D p 2
3 2 axsegconlem5 C 𝔼 N D 𝔼 N 0 T
4 3 adantl A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N 0 T
5 1 axsegconlem4 A 𝔼 N B 𝔼 N S
6 5 3adant3 A 𝔼 N B 𝔼 N A B S
7 2 axsegconlem4 C 𝔼 N D 𝔼 N T
8 addge01 S T 0 T S S + T
9 6 7 8 syl2an A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N 0 T S S + T
10 4 9 mpbid A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N S S + T
11 6 adantr A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N S
12 1 axsegconlem5 A 𝔼 N B 𝔼 N 0 S
13 12 3adant3 A 𝔼 N B 𝔼 N A B 0 S
14 13 adantr A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N 0 S
15 readdcl S T S + T
16 6 7 15 syl2an A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N S + T
17 0red A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N 0
18 1 axsegconlem6 A 𝔼 N B 𝔼 N A B 0 < S
19 18 adantr A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N 0 < S
20 17 11 16 19 10 ltletrd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N 0 < S + T
21 divelunit S 0 S S + T 0 < S + T S S + T 0 1 S S + T
22 11 14 16 20 21 syl22anc A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N S S + T 0 1 S S + T
23 10 22 mpbird A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N S S + T 0 1