Metamath Proof Explorer


Theorem axsegconlem8

Description: Lemma for axsegcon . Show that a particular mapping generates a point. (Contributed by Scott Fenton, 18-Sep-2013)

Ref Expression
Hypotheses axsegconlem2.1 S=p=1NApBp2
axsegconlem7.2 T=p=1NCpDp2
axsegconlem8.3 F=k1NS+TBkTAkS
Assertion axsegconlem8 A𝔼NB𝔼NABC𝔼ND𝔼NF𝔼N

Proof

Step Hyp Ref Expression
1 axsegconlem2.1 S=p=1NApBp2
2 axsegconlem7.2 T=p=1NCpDp2
3 axsegconlem8.3 F=k1NS+TBkTAkS
4 1 axsegconlem4 A𝔼NB𝔼NS
5 4 3adant3 A𝔼NB𝔼NABS
6 5 ad2antrr A𝔼NB𝔼NABC𝔼ND𝔼Nk1NS
7 2 axsegconlem4 C𝔼ND𝔼NT
8 7 ad2antlr A𝔼NB𝔼NABC𝔼ND𝔼Nk1NT
9 6 8 readdcld A𝔼NB𝔼NABC𝔼ND𝔼Nk1NS+T
10 simpl2 A𝔼NB𝔼NABC𝔼ND𝔼NB𝔼N
11 fveere B𝔼Nk1NBk
12 10 11 sylan A𝔼NB𝔼NABC𝔼ND𝔼Nk1NBk
13 9 12 remulcld A𝔼NB𝔼NABC𝔼ND𝔼Nk1NS+TBk
14 simpl1 A𝔼NB𝔼NABC𝔼ND𝔼NA𝔼N
15 fveere A𝔼Nk1NAk
16 14 15 sylan A𝔼NB𝔼NABC𝔼ND𝔼Nk1NAk
17 8 16 remulcld A𝔼NB𝔼NABC𝔼ND𝔼Nk1NTAk
18 13 17 resubcld A𝔼NB𝔼NABC𝔼ND𝔼Nk1NS+TBkTAk
19 1 axsegconlem6 A𝔼NB𝔼NAB0<S
20 19 gt0ne0d A𝔼NB𝔼NABS0
21 20 ad2antrr A𝔼NB𝔼NABC𝔼ND𝔼Nk1NS0
22 18 6 21 redivcld A𝔼NB𝔼NABC𝔼ND𝔼Nk1NS+TBkTAkS
23 22 ralrimiva A𝔼NB𝔼NABC𝔼ND𝔼Nk1NS+TBkTAkS
24 eleenn D𝔼NN
25 24 ad2antll A𝔼NB𝔼NABC𝔼ND𝔼NN
26 mptelee Nk1NS+TBkTAkS𝔼Nk1NS+TBkTAkS
27 25 26 syl A𝔼NB𝔼NABC𝔼ND𝔼Nk1NS+TBkTAkS𝔼Nk1NS+TBkTAkS
28 23 27 mpbird A𝔼NB𝔼NABC𝔼ND𝔼Nk1NS+TBkTAkS𝔼N
29 3 28 eqeltrid A𝔼NB𝔼NABC𝔼ND𝔼NF𝔼N