Metamath Proof Explorer


Theorem axtgbtwnid

Description: Identity of Betweenness. Axiom A6 of Schwabhauser p. 11. (Contributed by Thierry Arnoux, 15-Mar-2019)

Ref Expression
Hypotheses axtrkg.p P=BaseG
axtrkg.d -˙=distG
axtrkg.i I=ItvG
axtrkg.g φG𝒢Tarski
axtgbtwnid.1 φXP
axtgbtwnid.2 φYP
axtgbtwnid.3 φYXIX
Assertion axtgbtwnid φX=Y

Proof

Step Hyp Ref Expression
1 axtrkg.p P=BaseG
2 axtrkg.d -˙=distG
3 axtrkg.i I=ItvG
4 axtrkg.g φG𝒢Tarski
5 axtgbtwnid.1 φXP
6 axtgbtwnid.2 φYP
7 axtgbtwnid.3 φYXIX
8 df-trkg 𝒢Tarski=𝒢TarskiC𝒢TarskiB𝒢TarskiCBf|[˙Basef/p]˙[˙Itvf/i]˙Line𝒢f=xp,ypxzp|zxiyxziyyxiz
9 inss1 𝒢TarskiC𝒢TarskiB𝒢TarskiCBf|[˙Basef/p]˙[˙Itvf/i]˙Line𝒢f=xp,ypxzp|zxiyxziyyxiz𝒢TarskiC𝒢TarskiB
10 inss2 𝒢TarskiC𝒢TarskiB𝒢TarskiB
11 9 10 sstri 𝒢TarskiC𝒢TarskiB𝒢TarskiCBf|[˙Basef/p]˙[˙Itvf/i]˙Line𝒢f=xp,ypxzp|zxiyxziyyxiz𝒢TarskiB
12 8 11 eqsstri 𝒢Tarski𝒢TarskiB
13 12 4 sselid φG𝒢TarskiB
14 1 2 3 istrkgb G𝒢TarskiBGVxPyPyxIxx=yxPyPzPuPvPuxIzvyIzaPauIyavIxs𝒫Pt𝒫PaPxsytxaIybPxsytbxIy
15 14 simprbi G𝒢TarskiBxPyPyxIxx=yxPyPzPuPvPuxIzvyIzaPauIyavIxs𝒫Pt𝒫PaPxsytxaIybPxsytbxIy
16 15 simp1d G𝒢TarskiBxPyPyxIxx=y
17 13 16 syl φxPyPyxIxx=y
18 id x=Xx=X
19 18 18 oveq12d x=XxIx=XIX
20 19 eleq2d x=XyxIxyXIX
21 eqeq1 x=Xx=yX=y
22 20 21 imbi12d x=XyxIxx=yyXIXX=y
23 eleq1 y=YyXIXYXIX
24 eqeq2 y=YX=yX=Y
25 23 24 imbi12d y=YyXIXX=yYXIXX=Y
26 22 25 rspc2v XPYPxPyPyxIxx=yYXIXX=Y
27 5 6 26 syl2anc φxPyPyxIxx=yYXIXX=Y
28 17 7 27 mp2d φX=Y