Description: Euclid's Axiom. Axiom A10 of Schwabhauser p. 13. This is equivalent to Euclid's parallel postulate when combined with other axioms. (Contributed by Thierry Arnoux, 16-Mar-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | axtrkge.p | |
|
axtrkge.d | |
||
axtrkge.i | |
||
axtgeucl.g | |
||
axtgeucl.1 | |
||
axtgeucl.2 | |
||
axtgeucl.3 | |
||
axtgeucl.4 | |
||
axtgeucl.5 | |
||
axtgeucl.6 | |
||
axtgeucl.7 | |
||
axtgeucl.8 | |
||
Assertion | axtgeucl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axtrkge.p | |
|
2 | axtrkge.d | |
|
3 | axtrkge.i | |
|
4 | axtgeucl.g | |
|
5 | axtgeucl.1 | |
|
6 | axtgeucl.2 | |
|
7 | axtgeucl.3 | |
|
8 | axtgeucl.4 | |
|
9 | axtgeucl.5 | |
|
10 | axtgeucl.6 | |
|
11 | axtgeucl.7 | |
|
12 | axtgeucl.8 | |
|
13 | 1 2 3 | istrkge | |
14 | 4 13 | sylib | |
15 | 14 | simprd | |
16 | oveq1 | |
|
17 | 16 | eleq2d | |
18 | neeq1 | |
|
19 | 17 18 | 3anbi13d | |
20 | oveq1 | |
|
21 | 20 | eleq2d | |
22 | oveq1 | |
|
23 | 22 | eleq2d | |
24 | 21 23 | 3anbi12d | |
25 | 24 | 2rexbidv | |
26 | 19 25 | imbi12d | |
27 | 26 | 2ralbidv | |
28 | oveq1 | |
|
29 | 28 | eleq2d | |
30 | 29 | 3anbi2d | |
31 | eleq1 | |
|
32 | 31 | 3anbi1d | |
33 | 32 | 2rexbidv | |
34 | 30 33 | imbi12d | |
35 | 34 | 2ralbidv | |
36 | oveq2 | |
|
37 | 36 | eleq2d | |
38 | 37 | 3anbi2d | |
39 | eleq1 | |
|
40 | 39 | 3anbi2d | |
41 | 40 | 2rexbidv | |
42 | 38 41 | imbi12d | |
43 | 42 | 2ralbidv | |
44 | 27 35 43 | rspc3v | |
45 | 5 6 7 44 | syl3anc | |
46 | 15 45 | mpd | |
47 | eleq1 | |
|
48 | eleq1 | |
|
49 | neeq2 | |
|
50 | 47 48 49 | 3anbi123d | |
51 | 50 | imbi1d | |
52 | oveq2 | |
|
53 | 52 | eleq2d | |
54 | 53 | 3anbi1d | |
55 | eleq1 | |
|
56 | 55 | 3anbi3d | |
57 | 56 | 2rexbidv | |
58 | 54 57 | imbi12d | |
59 | 51 58 | rspc2v | |
60 | 8 9 59 | syl2anc | |
61 | 46 60 | mpd | |
62 | 10 11 12 61 | mp3and | |