Metamath Proof Explorer


Theorem axunnd

Description: A version of the Axiom of Union with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 2-Jan-2002) (New usage is discouraged.)

Ref Expression
Assertion axunnd xyxyxxzyx

Proof

Step Hyp Ref Expression
1 axunndlem1 wywywwzyw
2 nfnae x¬xx=y
3 nfnae x¬xx=z
4 2 3 nfan x¬xx=y¬xx=z
5 nfnae y¬xx=y
6 nfnae y¬xx=z
7 5 6 nfan y¬xx=y¬xx=z
8 nfv w¬xx=y¬xx=z
9 nfcvf ¬xx=y_xy
10 9 adantr ¬xx=y¬xx=z_xy
11 nfcvd ¬xx=y¬xx=z_xw
12 10 11 nfeld ¬xx=y¬xx=zxyw
13 nfcvf ¬xx=z_xz
14 13 adantl ¬xx=y¬xx=z_xz
15 11 14 nfeld ¬xx=y¬xx=zxwz
16 12 15 nfand ¬xx=y¬xx=zxywwz
17 8 16 nfexd ¬xx=y¬xx=zxwywwz
18 17 12 nfimd ¬xx=y¬xx=zxwywwzyw
19 7 18 nfald ¬xx=y¬xx=zxywywwzyw
20 nfcvd ¬xx=y¬xx=z_yw
21 nfcvf2 ¬xx=y_yx
22 21 adantr ¬xx=y¬xx=z_yx
23 20 22 nfeqd ¬xx=y¬xx=zyw=x
24 7 23 nfan1 y¬xx=y¬xx=zw=x
25 elequ2 w=xywyx
26 elequ1 w=xwzxz
27 25 26 anbi12d w=xywwzyxxz
28 27 a1i ¬xx=y¬xx=zw=xywwzyxxz
29 4 16 28 cbvexd ¬xx=y¬xx=zwywwzxyxxz
30 29 adantr ¬xx=y¬xx=zw=xwywwzxyxxz
31 25 adantl ¬xx=y¬xx=zw=xywyx
32 30 31 imbi12d ¬xx=y¬xx=zw=xwywwzywxyxxzyx
33 24 32 albid ¬xx=y¬xx=zw=xywywwzywyxyxxzyx
34 33 ex ¬xx=y¬xx=zw=xywywwzywyxyxxzyx
35 4 19 34 cbvexd ¬xx=y¬xx=zwywywwzywxyxyxxzyx
36 1 35 mpbii ¬xx=y¬xx=zxyxyxxzyx
37 36 ex ¬xx=y¬xx=zxyxyxxzyx
38 nfae yxx=y
39 nfae xxx=y
40 elirrv ¬yy
41 elequ2 x=yyxyy
42 40 41 mtbiri x=y¬yx
43 42 intnanrd x=y¬yxxz
44 43 sps xx=y¬yxxz
45 39 44 nexd xx=y¬xyxxz
46 45 pm2.21d xx=yxyxxzyx
47 38 46 alrimi xx=yyxyxxzyx
48 47 19.8ad xx=yxyxyxxzyx
49 nfae yxx=z
50 nfae xxx=z
51 elirrv ¬zz
52 elequ1 x=zxzzz
53 51 52 mtbiri x=z¬xz
54 53 intnand x=z¬yxxz
55 54 sps xx=z¬yxxz
56 50 55 nexd xx=z¬xyxxz
57 56 pm2.21d xx=zxyxxzyx
58 49 57 alrimi xx=zyxyxxzyx
59 58 19.8ad xx=zxyxyxxzyx
60 37 48 59 pm2.61ii xyxyxxzyx