Metamath Proof Explorer


Theorem ballotlemfmpn

Description: ( FC ) finishes counting at ( M - N ) . (Contributed by Thierry Arnoux, 25-Nov-2016)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O=c𝒫1M+N|c=M
ballotth.p P=x𝒫OxO
ballotth.f F=cOi1ic1ic
Assertion ballotlemfmpn COFCM+N=MN

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O=c𝒫1M+N|c=M
4 ballotth.p P=x𝒫OxO
5 ballotth.f F=cOi1ic1ic
6 id COCO
7 nnaddcl MNM+N
8 1 2 7 mp2an M+N
9 8 nnzi M+N
10 9 a1i COM+N
11 1 2 3 4 5 6 10 ballotlemfval COFCM+N=1M+NC1M+NC
12 ssrab2 c𝒫1M+N|c=M𝒫1M+N
13 3 12 eqsstri O𝒫1M+N
14 13 sseli COC𝒫1M+N
15 14 elpwid COC1M+N
16 sseqin2 C1M+N1M+NC=C
17 15 16 sylib CO1M+NC=C
18 17 fveq2d CO1M+NC=C
19 rabssab c𝒫1M+N|c=Mc|c=M
20 19 sseli Cc𝒫1M+N|c=MCc|c=M
21 20 3 eleq2s COCc|c=M
22 fveqeq2 b=Cb=MC=M
23 fveqeq2 c=bc=Mb=M
24 23 cbvabv c|c=M=b|b=M
25 22 24 elab2g COCc|c=MC=M
26 21 25 mpbid COC=M
27 18 26 eqtrd CO1M+NC=M
28 fzfi 1M+NFin
29 hashssdif 1M+NFinC1M+N1M+NC=1M+NC
30 28 15 29 sylancr CO1M+NC=1M+NC
31 8 nnnn0i M+N0
32 hashfz1 M+N01M+N=M+N
33 31 32 mp1i CO1M+N=M+N
34 33 26 oveq12d CO1M+NC=M+N-M
35 1 nncni M
36 2 nncni N
37 pncan2 MNM+N-M=N
38 35 36 37 mp2an M+N-M=N
39 38 a1i COM+N-M=N
40 30 34 39 3eqtrd CO1M+NC=N
41 27 40 oveq12d CO1M+NC1M+NC=MN
42 11 41 eqtrd COFCM+N=MN