Metamath Proof Explorer


Theorem bastop1

Description: A subset of a topology is a basis for the topology iff every member of the topology is a union of members of the basis. We use the idiom " ( topGenB ) = J " to express " B is a basis for topology J " since we do not have a separate notation for this. Definition 15.35 of Schechter p. 428. (Contributed by NM, 2-Feb-2008) (Proof shortened by Mario Carneiro, 2-Sep-2015)

Ref Expression
Assertion bastop1 JTopBJtopGenB=JxJyyBx=y

Proof

Step Hyp Ref Expression
1 tgss JTopBJtopGenBtopGenJ
2 tgtop JToptopGenJ=J
3 2 adantr JTopBJtopGenJ=J
4 1 3 sseqtrd JTopBJtopGenBJ
5 eqss topGenB=JtopGenBJJtopGenB
6 5 baib topGenBJtopGenB=JJtopGenB
7 4 6 syl JTopBJtopGenB=JJtopGenB
8 dfss3 JtopGenBxJxtopGenB
9 7 8 bitrdi JTopBJtopGenB=JxJxtopGenB
10 ssexg BJJTopBV
11 10 ancoms JTopBJBV
12 eltg3 BVxtopGenByyBx=y
13 11 12 syl JTopBJxtopGenByyBx=y
14 13 ralbidv JTopBJxJxtopGenBxJyyBx=y
15 9 14 bitrd JTopBJtopGenB=JxJyyBx=y