Metamath Proof Explorer


Theorem bj-0int

Description: If A is a collection of subsets of X , like a Moore collection or a topology, two equivalent ways to say that arbitrary intersections of elements of A relative to X belong to some class B : the LHS singles out the empty intersection (the empty intersection relative to X is X and the intersection of a nonempty family of subsets of X is included in X , so there is no need to intersect it with X ). In typical applications, B is A itself. (Contributed by BJ, 7-Dec-2021)

Ref Expression
Assertion bj-0int A𝒫XXBx𝒫AxBx𝒫AXxB

Proof

Step Hyp Ref Expression
1 ssv XV
2 int0 =V
3 1 2 sseqtrri X
4 df-ss XX=X
5 3 4 mpbi X=X
6 5 eqcomi X=X
7 6 eleq1i XBXB
8 7 a1i A𝒫XXBXB
9 eldifsn x𝒫Ax𝒫Ax
10 sstr2 xAA𝒫Xx𝒫X
11 intss2 x𝒫XxxX
12 10 11 syl6 xAA𝒫XxxX
13 elpwi x𝒫AxA
14 12 13 syl11 A𝒫Xx𝒫AxxX
15 14 impd A𝒫Xx𝒫AxxX
16 9 15 biimtrid A𝒫Xx𝒫AxX
17 df-ss xXxX=x
18 incom xX=Xx
19 18 eqeq1i xX=xXx=x
20 eqcom Xx=xx=Xx
21 19 20 sylbb xX=xx=Xx
22 17 21 sylbi xXx=Xx
23 eleq1 x=XxxBXxB
24 23 a1i A𝒫Xx=XxxBXxB
25 22 24 syl5 A𝒫XxXxBXxB
26 16 25 syld A𝒫Xx𝒫AxBXxB
27 26 ralrimiv A𝒫Xx𝒫AxBXxB
28 ralbi x𝒫AxBXxBx𝒫AxBx𝒫AXxB
29 27 28 syl A𝒫Xx𝒫AxBx𝒫AXxB
30 8 29 anbi12d A𝒫XXBx𝒫AxBXBx𝒫AXxB
31 30 biancomd A𝒫XXBx𝒫AxBx𝒫AXxBXB
32 0elpw 𝒫A
33 inteq x=x=
34 ineq2 x=Xx=X
35 eleq1 Xx=XXxBXB
36 33 34 35 3syl x=XxBXB
37 36 bj-raldifsn 𝒫Ax𝒫AXxBx𝒫AXxBXB
38 32 37 ax-mp x𝒫AXxBx𝒫AXxBXB
39 31 38 bitr4di A𝒫XXBx𝒫AxBx𝒫AXxB