Metamath Proof Explorer


Theorem bj-disj2r

Description: Relative version of ssdifin0 , allowing a biconditional, and of disj2 . (Contributed by BJ, 11-Nov-2021) This proof does not rely, even indirectly, on ssdifin0 nor disj2 . (Proof modification is discouraged.)

Ref Expression
Assertion bj-disj2r AVVBABV=

Proof

Step Hyp Ref Expression
1 df-ss AVVBAVVB=AV
2 indif2 AVVB=AVVB
3 inss1 AVVAV
4 ssid AVAV
5 inss2 AVV
6 4 5 ssini AVAVV
7 3 6 eqssi AVV=AV
8 7 difeq1i AVVB=AVB
9 2 8 eqtri AVVB=AVB
10 9 eqeq1i AVVB=AVAVB=AV
11 eqcom AVB=AVAV=AVB
12 1 10 11 3bitri AVVBAV=AVB
13 disj3 AVB=AV=AVB
14 in32 AVB=ABV
15 14 eqeq1i AVB=ABV=
16 12 13 15 3bitr2i AVVBABV=