Metamath Proof Explorer


Theorem bj-nuliotaALT

Description: Alternate proof of bj-nuliota . Note that this alternate proof uses the fact that iota x ph evaluates to (/) when there is no x satisfying ph ( iotanul ). This is an implementation detail of the encoding currently used in set.mm and should be avoided. (Contributed by BJ, 30-Nov-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion bj-nuliotaALT = ι x | y ¬ y x

Proof

Step Hyp Ref Expression
1 0ss ι x | y ¬ y x
2 iotassuni ι x | y ¬ y x x | y ¬ y x
3 eq0 x = y ¬ y x
4 3 bicomi y ¬ y x x =
5 4 abbii x | y ¬ y x = x | x =
6 5 unieqi x | y ¬ y x = x | x =
7 df-sn = x | x =
8 7 eqcomi x | x = =
9 8 unieqi x | x = =
10 0ex V
11 10 unisn =
12 6 9 11 3eqtri x | y ¬ y x =
13 2 12 sseqtri ι x | y ¬ y x
14 1 13 eqssi = ι x | y ¬ y x