Metamath Proof Explorer


Theorem bj-nuliotaALT

Description: Alternate proof of bj-nuliota . Note that this alternate proof uses the fact that iota x ph evaluates to (/) when there is no x satisfying ph ( iotanul ). This is an implementation detail of the encoding currently used in set.mm and should be avoided. (Contributed by BJ, 30-Nov-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion bj-nuliotaALT =ιx|y¬yx

Proof

Step Hyp Ref Expression
1 0ss ιx|y¬yx
2 iotassuni ιx|y¬yxx|y¬yx
3 eq0 x=y¬yx
4 3 bicomi y¬yxx=
5 4 abbii x|y¬yx=x|x=
6 5 unieqi x|y¬yx=x|x=
7 df-sn =x|x=
8 7 eqcomi x|x==
9 8 unieqi x|x==
10 0ex V
11 10 unisn =
12 6 9 11 3eqtri x|y¬yx=
13 2 12 sseqtri ιx|y¬yx
14 1 13 eqssi =ιx|y¬yx