Metamath Proof Explorer


Theorem blf

Description: Mapping of a ball. (Contributed by NM, 7-May-2007) (Revised by Mario Carneiro, 23-Aug-2015)

Ref Expression
Assertion blf D∞MetXballD:X×*𝒫X

Proof

Step Hyp Ref Expression
1 ssrab2 yX|xDy<rX
2 elfvdm D∞MetXXdom∞Met
3 elpw2g Xdom∞MetyX|xDy<r𝒫XyX|xDy<rX
4 2 3 syl D∞MetXyX|xDy<r𝒫XyX|xDy<rX
5 1 4 mpbiri D∞MetXyX|xDy<r𝒫X
6 5 a1d D∞MetXxXr*yX|xDy<r𝒫X
7 6 ralrimivv D∞MetXxXr*yX|xDy<r𝒫X
8 eqid xX,r*yX|xDy<r=xX,r*yX|xDy<r
9 8 fmpo xXr*yX|xDy<r𝒫XxX,r*yX|xDy<r:X×*𝒫X
10 7 9 sylib D∞MetXxX,r*yX|xDy<r:X×*𝒫X
11 blfval D∞MetXballD=xX,r*yX|xDy<r
12 11 feq1d D∞MetXballD:X×*𝒫XxX,r*yX|xDy<r:X×*𝒫X
13 10 12 mpbird D∞MetXballD:X×*𝒫X