Metamath Proof Explorer


Theorem blssp

Description: A ball in the subspace metric. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 5-Jan-2014)

Ref Expression
Hypothesis blssp.2 N=MS×S
Assertion blssp MMetXSXYSR+YballNR=YballMRS

Proof

Step Hyp Ref Expression
1 blssp.2 N=MS×S
2 metxmet MMetXM∞MetX
3 2 ad2antrr MMetXSXYSR+M∞MetX
4 simprl MMetXSXYSR+YS
5 simplr MMetXSXYSR+SX
6 sseqin2 SXXS=S
7 5 6 sylib MMetXSXYSR+XS=S
8 4 7 eleqtrrd MMetXSXYSR+YXS
9 rpxr R+R*
10 9 ad2antll MMetXSXYSR+R*
11 1 blres M∞MetXYXSR*YballNR=YballMRS
12 3 8 10 11 syl3anc MMetXSXYSR+YballNR=YballMRS