Step |
Hyp |
Ref |
Expression |
1 |
|
mettrifi.2 |
|
2 |
|
mettrifi.3 |
|
3 |
|
mettrifi.4 |
|
4 |
|
eluzfz2 |
|
5 |
2 4
|
syl |
|
6 |
|
eleq1 |
|
7 |
|
fveq2 |
|
8 |
7
|
oveq2d |
|
9 |
|
oveq1 |
|
10 |
9
|
oveq2d |
|
11 |
10
|
sumeq1d |
|
12 |
8 11
|
breq12d |
|
13 |
6 12
|
imbi12d |
|
14 |
13
|
imbi2d |
|
15 |
|
eleq1 |
|
16 |
|
fveq2 |
|
17 |
16
|
oveq2d |
|
18 |
|
oveq1 |
|
19 |
18
|
oveq2d |
|
20 |
19
|
sumeq1d |
|
21 |
17 20
|
breq12d |
|
22 |
15 21
|
imbi12d |
|
23 |
22
|
imbi2d |
|
24 |
|
eleq1 |
|
25 |
|
fveq2 |
|
26 |
25
|
oveq2d |
|
27 |
|
oveq1 |
|
28 |
27
|
oveq2d |
|
29 |
28
|
sumeq1d |
|
30 |
26 29
|
breq12d |
|
31 |
24 30
|
imbi12d |
|
32 |
31
|
imbi2d |
|
33 |
|
eleq1 |
|
34 |
|
fveq2 |
|
35 |
34
|
oveq2d |
|
36 |
|
oveq1 |
|
37 |
36
|
oveq2d |
|
38 |
37
|
sumeq1d |
|
39 |
35 38
|
breq12d |
|
40 |
33 39
|
imbi12d |
|
41 |
40
|
imbi2d |
|
42 |
|
0le0 |
|
43 |
42
|
a1i |
|
44 |
|
eluzfz1 |
|
45 |
2 44
|
syl |
|
46 |
3
|
ralrimiva |
|
47 |
|
fveq2 |
|
48 |
47
|
eleq1d |
|
49 |
48
|
rspcv |
|
50 |
45 46 49
|
sylc |
|
51 |
|
met0 |
|
52 |
1 50 51
|
syl2anc |
|
53 |
|
eluzel2 |
|
54 |
2 53
|
syl |
|
55 |
54
|
zred |
|
56 |
55
|
ltm1d |
|
57 |
|
peano2zm |
|
58 |
|
fzn |
|
59 |
54 57 58
|
syl2anc2 |
|
60 |
56 59
|
mpbid |
|
61 |
60
|
sumeq1d |
|
62 |
|
sum0 |
|
63 |
61 62
|
eqtrdi |
|
64 |
43 52 63
|
3brtr4d |
|
65 |
64
|
a1d |
|
66 |
65
|
a1i |
|
67 |
|
peano2fzr |
|
68 |
67
|
ex |
|
69 |
68
|
adantl |
|
70 |
69
|
imim1d |
|
71 |
1
|
3ad2ant1 |
|
72 |
50
|
3ad2ant1 |
|
73 |
|
simp3 |
|
74 |
46
|
3ad2ant1 |
|
75 |
|
fveq2 |
|
76 |
75
|
eleq1d |
|
77 |
76
|
rspcv |
|
78 |
73 74 77
|
sylc |
|
79 |
|
fveq2 |
|
80 |
79
|
eleq1d |
|
81 |
80
|
cbvralvw |
|
82 |
74 81
|
sylib |
|
83 |
69
|
3impia |
|
84 |
|
rsp |
|
85 |
82 83 84
|
sylc |
|
86 |
|
mettri |
|
87 |
71 72 78 85 86
|
syl13anc |
|
88 |
|
metcl |
|
89 |
71 72 78 88
|
syl3anc |
|
90 |
|
metcl |
|
91 |
71 72 85 90
|
syl3anc |
|
92 |
|
metcl |
|
93 |
71 85 78 92
|
syl3anc |
|
94 |
91 93
|
readdcld |
|
95 |
|
fzfid |
|
96 |
71
|
adantr |
|
97 |
|
elfzuz3 |
|
98 |
83 97
|
syl |
|
99 |
|
fzss2 |
|
100 |
98 99
|
syl |
|
101 |
100
|
sselda |
|
102 |
3
|
3ad2antl1 |
|
103 |
101 102
|
syldan |
|
104 |
|
elfzuz |
|
105 |
104
|
adantl |
|
106 |
|
peano2uz |
|
107 |
105 106
|
syl |
|
108 |
|
elfzuz3 |
|
109 |
73 108
|
syl |
|
110 |
109
|
adantr |
|
111 |
|
elfzuz3 |
|
112 |
111
|
adantl |
|
113 |
|
eluzp1p1 |
|
114 |
112 113
|
syl |
|
115 |
|
uztrn |
|
116 |
110 114 115
|
syl2anc |
|
117 |
|
elfzuzb |
|
118 |
107 116 117
|
sylanbrc |
|
119 |
|
fveq2 |
|
120 |
119
|
eleq1d |
|
121 |
120
|
rspccva |
|
122 |
82 121
|
sylan |
|
123 |
118 122
|
syldan |
|
124 |
|
metcl |
|
125 |
96 103 123 124
|
syl3anc |
|
126 |
95 125
|
fsumrecl |
|
127 |
|
letr |
|
128 |
89 94 126 127
|
syl3anc |
|
129 |
87 128
|
mpand |
|
130 |
|
fzfid |
|
131 |
|
fzssp1 |
|
132 |
|
eluzelz |
|
133 |
132
|
3ad2ant2 |
|
134 |
133
|
zcnd |
|
135 |
|
ax-1cn |
|
136 |
|
npcan |
|
137 |
134 135 136
|
sylancl |
|
138 |
137
|
oveq2d |
|
139 |
131 138
|
sseqtrid |
|
140 |
139
|
sselda |
|
141 |
140 125
|
syldan |
|
142 |
130 141
|
fsumrecl |
|
143 |
91 142 93
|
leadd1d |
|
144 |
|
simp2 |
|
145 |
125
|
recnd |
|
146 |
|
fvoveq1 |
|
147 |
79 146
|
oveq12d |
|
148 |
144 145 147
|
fsumm1 |
|
149 |
148
|
breq2d |
|
150 |
143 149
|
bitr4d |
|
151 |
|
pncan |
|
152 |
134 135 151
|
sylancl |
|
153 |
152
|
oveq2d |
|
154 |
153
|
sumeq1d |
|
155 |
154
|
breq2d |
|
156 |
129 150 155
|
3imtr4d |
|
157 |
156
|
3expia |
|
158 |
157
|
a2d |
|
159 |
70 158
|
syld |
|
160 |
159
|
expcom |
|
161 |
160
|
a2d |
|
162 |
14 23 32 41 66 161
|
uzind4 |
|
163 |
2 162
|
mpcom |
|
164 |
5 163
|
mpd |
|