Metamath Proof Explorer


Theorem lmclim2

Description: A sequence in a metric space converges to a point iff the distance between the point and the elements of the sequence converges to 0. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 5-Jun-2014)

Ref Expression
Hypotheses lmclim2.2 φDMetX
lmclim2.3 φF:X
lmclim2.4 J=MetOpenD
lmclim2.5 G=xFxDY
lmclim2.6 φYX
Assertion lmclim2 φFtJYG0

Proof

Step Hyp Ref Expression
1 lmclim2.2 φDMetX
2 lmclim2.3 φF:X
3 lmclim2.4 J=MetOpenD
4 lmclim2.5 G=xFxDY
5 lmclim2.6 φYX
6 metxmet DMetXD∞MetX
7 1 6 syl φD∞MetX
8 nnuz =1
9 1zzd φ1
10 eqidd φkFk=Fk
11 3 7 8 9 10 2 lmmbrf φFtJYYXx+jkjFkDY<x
12 nnex V
13 12 mptex xFxDYV
14 4 13 eqeltri GV
15 14 a1i φGV
16 fveq2 x=kFx=Fk
17 16 oveq1d x=kFxDY=FkDY
18 ovex FkDYV
19 17 4 18 fvmpt kGk=FkDY
20 19 adantl φkGk=FkDY
21 1 adantr φkDMetX
22 2 ffvelcdmda φkFkX
23 5 adantr φkYX
24 metcl DMetXFkXYXFkDY
25 21 22 23 24 syl3anc φkFkDY
26 25 recnd φkFkDY
27 8 9 15 20 26 clim0c φG0x+jkjFkDY<x
28 eluznn jkjk
29 metge0 DMetXFkXYX0FkDY
30 21 22 23 29 syl3anc φk0FkDY
31 25 30 absidd φkFkDY=FkDY
32 31 breq1d φkFkDY<xFkDY<x
33 28 32 sylan2 φjkjFkDY<xFkDY<x
34 33 anassrs φjkjFkDY<xFkDY<x
35 34 ralbidva φjkjFkDY<xkjFkDY<x
36 35 rexbidva φjkjFkDY<xjkjFkDY<x
37 36 ralbidv φx+jkjFkDY<xx+jkjFkDY<x
38 5 biantrurd φx+jkjFkDY<xYXx+jkjFkDY<x
39 27 37 38 3bitrrd φYXx+jkjFkDY<xG0
40 11 39 bitrd φFtJYG0