Step |
Hyp |
Ref |
Expression |
1 |
|
lmclim2.2 |
|
2 |
|
lmclim2.3 |
|
3 |
|
lmclim2.4 |
|
4 |
|
lmclim2.5 |
|
5 |
|
lmclim2.6 |
|
6 |
|
metxmet |
|
7 |
1 6
|
syl |
|
8 |
|
nnuz |
|
9 |
|
1zzd |
|
10 |
|
eqidd |
|
11 |
3 7 8 9 10 2
|
lmmbrf |
|
12 |
|
nnex |
|
13 |
12
|
mptex |
|
14 |
4 13
|
eqeltri |
|
15 |
14
|
a1i |
|
16 |
|
fveq2 |
|
17 |
16
|
oveq1d |
|
18 |
|
ovex |
|
19 |
17 4 18
|
fvmpt |
|
20 |
19
|
adantl |
|
21 |
1
|
adantr |
|
22 |
2
|
ffvelrnda |
|
23 |
5
|
adantr |
|
24 |
|
metcl |
|
25 |
21 22 23 24
|
syl3anc |
|
26 |
25
|
recnd |
|
27 |
8 9 15 20 26
|
clim0c |
|
28 |
|
eluznn |
|
29 |
|
metge0 |
|
30 |
21 22 23 29
|
syl3anc |
|
31 |
25 30
|
absidd |
|
32 |
31
|
breq1d |
|
33 |
28 32
|
sylan2 |
|
34 |
33
|
anassrs |
|
35 |
34
|
ralbidva |
|
36 |
35
|
rexbidva |
|
37 |
36
|
ralbidv |
|
38 |
5
|
biantrurd |
|
39 |
27 37 38
|
3bitrrd |
|
40 |
11 39
|
bitrd |
|