Description: A sequence in a metric space converges to a point iff the distance between the point and the elements of the sequence converges to 0. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 5-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lmclim2.2 | |
|
lmclim2.3 | |
||
lmclim2.4 | |
||
lmclim2.5 | |
||
lmclim2.6 | |
||
Assertion | lmclim2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmclim2.2 | |
|
2 | lmclim2.3 | |
|
3 | lmclim2.4 | |
|
4 | lmclim2.5 | |
|
5 | lmclim2.6 | |
|
6 | metxmet | |
|
7 | 1 6 | syl | |
8 | nnuz | |
|
9 | 1zzd | |
|
10 | eqidd | |
|
11 | 3 7 8 9 10 2 | lmmbrf | |
12 | nnex | |
|
13 | 12 | mptex | |
14 | 4 13 | eqeltri | |
15 | 14 | a1i | |
16 | fveq2 | |
|
17 | 16 | oveq1d | |
18 | ovex | |
|
19 | 17 4 18 | fvmpt | |
20 | 19 | adantl | |
21 | 1 | adantr | |
22 | 2 | ffvelcdmda | |
23 | 5 | adantr | |
24 | metcl | |
|
25 | 21 22 23 24 | syl3anc | |
26 | 25 | recnd | |
27 | 8 9 15 20 26 | clim0c | |
28 | eluznn | |
|
29 | metge0 | |
|
30 | 21 22 23 29 | syl3anc | |
31 | 25 30 | absidd | |
32 | 31 | breq1d | |
33 | 28 32 | sylan2 | |
34 | 33 | anassrs | |
35 | 34 | ralbidva | |
36 | 35 | rexbidva | |
37 | 36 | ralbidv | |
38 | 5 | biantrurd | |
39 | 27 37 38 | 3bitrrd | |
40 | 11 39 | bitrd | |