Metamath Proof Explorer


Theorem lmclim2

Description: A sequence in a metric space converges to a point iff the distance between the point and the elements of the sequence converges to 0. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 5-Jun-2014)

Ref Expression
Hypotheses lmclim2.2 ( 𝜑𝐷 ∈ ( Met ‘ 𝑋 ) )
lmclim2.3 ( 𝜑𝐹 : ℕ ⟶ 𝑋 )
lmclim2.4 𝐽 = ( MetOpen ‘ 𝐷 )
lmclim2.5 𝐺 = ( 𝑥 ∈ ℕ ↦ ( ( 𝐹𝑥 ) 𝐷 𝑌 ) )
lmclim2.6 ( 𝜑𝑌𝑋 )
Assertion lmclim2 ( 𝜑 → ( 𝐹 ( ⇝𝑡𝐽 ) 𝑌𝐺 ⇝ 0 ) )

Proof

Step Hyp Ref Expression
1 lmclim2.2 ( 𝜑𝐷 ∈ ( Met ‘ 𝑋 ) )
2 lmclim2.3 ( 𝜑𝐹 : ℕ ⟶ 𝑋 )
3 lmclim2.4 𝐽 = ( MetOpen ‘ 𝐷 )
4 lmclim2.5 𝐺 = ( 𝑥 ∈ ℕ ↦ ( ( 𝐹𝑥 ) 𝐷 𝑌 ) )
5 lmclim2.6 ( 𝜑𝑌𝑋 )
6 metxmet ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
7 1 6 syl ( 𝜑𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
8 nnuz ℕ = ( ℤ ‘ 1 )
9 1zzd ( 𝜑 → 1 ∈ ℤ )
10 eqidd ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝐹𝑘 ) = ( 𝐹𝑘 ) )
11 3 7 8 9 10 2 lmmbrf ( 𝜑 → ( 𝐹 ( ⇝𝑡𝐽 ) 𝑌 ↔ ( 𝑌𝑋 ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( ( 𝐹𝑘 ) 𝐷 𝑌 ) < 𝑥 ) ) )
12 nnex ℕ ∈ V
13 12 mptex ( 𝑥 ∈ ℕ ↦ ( ( 𝐹𝑥 ) 𝐷 𝑌 ) ) ∈ V
14 4 13 eqeltri 𝐺 ∈ V
15 14 a1i ( 𝜑𝐺 ∈ V )
16 fveq2 ( 𝑥 = 𝑘 → ( 𝐹𝑥 ) = ( 𝐹𝑘 ) )
17 16 oveq1d ( 𝑥 = 𝑘 → ( ( 𝐹𝑥 ) 𝐷 𝑌 ) = ( ( 𝐹𝑘 ) 𝐷 𝑌 ) )
18 ovex ( ( 𝐹𝑘 ) 𝐷 𝑌 ) ∈ V
19 17 4 18 fvmpt ( 𝑘 ∈ ℕ → ( 𝐺𝑘 ) = ( ( 𝐹𝑘 ) 𝐷 𝑌 ) )
20 19 adantl ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝐺𝑘 ) = ( ( 𝐹𝑘 ) 𝐷 𝑌 ) )
21 1 adantr ( ( 𝜑𝑘 ∈ ℕ ) → 𝐷 ∈ ( Met ‘ 𝑋 ) )
22 2 ffvelrnda ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝐹𝑘 ) ∈ 𝑋 )
23 5 adantr ( ( 𝜑𝑘 ∈ ℕ ) → 𝑌𝑋 )
24 metcl ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹𝑘 ) ∈ 𝑋𝑌𝑋 ) → ( ( 𝐹𝑘 ) 𝐷 𝑌 ) ∈ ℝ )
25 21 22 23 24 syl3anc ( ( 𝜑𝑘 ∈ ℕ ) → ( ( 𝐹𝑘 ) 𝐷 𝑌 ) ∈ ℝ )
26 25 recnd ( ( 𝜑𝑘 ∈ ℕ ) → ( ( 𝐹𝑘 ) 𝐷 𝑌 ) ∈ ℂ )
27 8 9 15 20 26 clim0c ( 𝜑 → ( 𝐺 ⇝ 0 ↔ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ ( ( 𝐹𝑘 ) 𝐷 𝑌 ) ) < 𝑥 ) )
28 eluznn ( ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ𝑗 ) ) → 𝑘 ∈ ℕ )
29 metge0 ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹𝑘 ) ∈ 𝑋𝑌𝑋 ) → 0 ≤ ( ( 𝐹𝑘 ) 𝐷 𝑌 ) )
30 21 22 23 29 syl3anc ( ( 𝜑𝑘 ∈ ℕ ) → 0 ≤ ( ( 𝐹𝑘 ) 𝐷 𝑌 ) )
31 25 30 absidd ( ( 𝜑𝑘 ∈ ℕ ) → ( abs ‘ ( ( 𝐹𝑘 ) 𝐷 𝑌 ) ) = ( ( 𝐹𝑘 ) 𝐷 𝑌 ) )
32 31 breq1d ( ( 𝜑𝑘 ∈ ℕ ) → ( ( abs ‘ ( ( 𝐹𝑘 ) 𝐷 𝑌 ) ) < 𝑥 ↔ ( ( 𝐹𝑘 ) 𝐷 𝑌 ) < 𝑥 ) )
33 28 32 sylan2 ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ𝑗 ) ) ) → ( ( abs ‘ ( ( 𝐹𝑘 ) 𝐷 𝑌 ) ) < 𝑥 ↔ ( ( 𝐹𝑘 ) 𝐷 𝑌 ) < 𝑥 ) )
34 33 anassrs ( ( ( 𝜑𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑗 ) ) → ( ( abs ‘ ( ( 𝐹𝑘 ) 𝐷 𝑌 ) ) < 𝑥 ↔ ( ( 𝐹𝑘 ) 𝐷 𝑌 ) < 𝑥 ) )
35 34 ralbidva ( ( 𝜑𝑗 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ ( ( 𝐹𝑘 ) 𝐷 𝑌 ) ) < 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( ( 𝐹𝑘 ) 𝐷 𝑌 ) < 𝑥 ) )
36 35 rexbidva ( 𝜑 → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ ( ( 𝐹𝑘 ) 𝐷 𝑌 ) ) < 𝑥 ↔ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( ( 𝐹𝑘 ) 𝐷 𝑌 ) < 𝑥 ) )
37 36 ralbidv ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ ( ( 𝐹𝑘 ) 𝐷 𝑌 ) ) < 𝑥 ↔ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( ( 𝐹𝑘 ) 𝐷 𝑌 ) < 𝑥 ) )
38 5 biantrurd ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( ( 𝐹𝑘 ) 𝐷 𝑌 ) < 𝑥 ↔ ( 𝑌𝑋 ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( ( 𝐹𝑘 ) 𝐷 𝑌 ) < 𝑥 ) ) )
39 27 37 38 3bitrrd ( 𝜑 → ( ( 𝑌𝑋 ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( ( 𝐹𝑘 ) 𝐷 𝑌 ) < 𝑥 ) ↔ 𝐺 ⇝ 0 ) )
40 11 39 bitrd ( 𝜑 → ( 𝐹 ( ⇝𝑡𝐽 ) 𝑌𝐺 ⇝ 0 ) )