| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmclim2.2 | ⊢ ( 𝜑  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 2 |  | lmclim2.3 | ⊢ ( 𝜑  →  𝐹 : ℕ ⟶ 𝑋 ) | 
						
							| 3 |  | lmclim2.4 | ⊢ 𝐽  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 4 |  | lmclim2.5 | ⊢ 𝐺  =  ( 𝑥  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑥 ) 𝐷 𝑌 ) ) | 
						
							| 5 |  | lmclim2.6 | ⊢ ( 𝜑  →  𝑌  ∈  𝑋 ) | 
						
							| 6 |  | metxmet | ⊢ ( 𝐷  ∈  ( Met ‘ 𝑋 )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 7 | 1 6 | syl | ⊢ ( 𝜑  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 8 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 9 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 10 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 11 | 3 7 8 9 10 2 | lmmbrf | ⊢ ( 𝜑  →  ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑌  ↔  ( 𝑌  ∈  𝑋  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 )  <  𝑥 ) ) ) | 
						
							| 12 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 13 | 12 | mptex | ⊢ ( 𝑥  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑥 ) 𝐷 𝑌 ) )  ∈  V | 
						
							| 14 | 4 13 | eqeltri | ⊢ 𝐺  ∈  V | 
						
							| 15 | 14 | a1i | ⊢ ( 𝜑  →  𝐺  ∈  V ) | 
						
							| 16 |  | fveq2 | ⊢ ( 𝑥  =  𝑘  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 17 | 16 | oveq1d | ⊢ ( 𝑥  =  𝑘  →  ( ( 𝐹 ‘ 𝑥 ) 𝐷 𝑌 )  =  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 ) ) | 
						
							| 18 |  | ovex | ⊢ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 )  ∈  V | 
						
							| 19 | 17 4 18 | fvmpt | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐺 ‘ 𝑘 )  =  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 ) ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐺 ‘ 𝑘 )  =  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 ) ) | 
						
							| 21 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 22 | 2 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐹 ‘ 𝑘 )  ∈  𝑋 ) | 
						
							| 23 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  𝑌  ∈  𝑋 ) | 
						
							| 24 |  | metcl | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  𝑌  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 )  ∈  ℝ ) | 
						
							| 25 | 21 22 23 24 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 )  ∈  ℝ ) | 
						
							| 26 | 25 | recnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 )  ∈  ℂ ) | 
						
							| 27 | 8 9 15 20 26 | clim0c | ⊢ ( 𝜑  →  ( 𝐺  ⇝  0  ↔  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 ) )  <  𝑥 ) ) | 
						
							| 28 |  | eluznn | ⊢ ( ( 𝑗  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑘  ∈  ℕ ) | 
						
							| 29 |  | metge0 | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  𝑌  ∈  𝑋 )  →  0  ≤  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 ) ) | 
						
							| 30 | 21 22 23 29 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  0  ≤  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 ) ) | 
						
							| 31 | 25 30 | absidd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 ) )  =  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 ) ) | 
						
							| 32 | 31 | breq1d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 ) )  <  𝑥  ↔  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 )  <  𝑥 ) ) | 
						
							| 33 | 28 32 | sylan2 | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 ) )  <  𝑥  ↔  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 )  <  𝑥 ) ) | 
						
							| 34 | 33 | anassrs | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 ) )  <  𝑥  ↔  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 )  <  𝑥 ) ) | 
						
							| 35 | 34 | ralbidva | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 ) )  <  𝑥  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 )  <  𝑥 ) ) | 
						
							| 36 | 35 | rexbidva | ⊢ ( 𝜑  →  ( ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 ) )  <  𝑥  ↔  ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 )  <  𝑥 ) ) | 
						
							| 37 | 36 | ralbidv | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 ) )  <  𝑥  ↔  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 )  <  𝑥 ) ) | 
						
							| 38 | 5 | biantrurd | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 )  <  𝑥  ↔  ( 𝑌  ∈  𝑋  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 )  <  𝑥 ) ) ) | 
						
							| 39 | 27 37 38 | 3bitrrd | ⊢ ( 𝜑  →  ( ( 𝑌  ∈  𝑋  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 )  <  𝑥 )  ↔  𝐺  ⇝  0 ) ) | 
						
							| 40 | 11 39 | bitrd | ⊢ ( 𝜑  →  ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑌  ↔  𝐺  ⇝  0 ) ) |