Step |
Hyp |
Ref |
Expression |
1 |
|
lmclim2.2 |
⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
2 |
|
lmclim2.3 |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ 𝑋 ) |
3 |
|
lmclim2.4 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
4 |
|
lmclim2.5 |
⊢ 𝐺 = ( 𝑥 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑥 ) 𝐷 𝑌 ) ) |
5 |
|
lmclim2.6 |
⊢ ( 𝜑 → 𝑌 ∈ 𝑋 ) |
6 |
|
metxmet |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
7 |
1 6
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
8 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
9 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
10 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
11 |
3 7 8 9 10 2
|
lmmbrf |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑌 ↔ ( 𝑌 ∈ 𝑋 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 ) < 𝑥 ) ) ) |
12 |
|
nnex |
⊢ ℕ ∈ V |
13 |
12
|
mptex |
⊢ ( 𝑥 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑥 ) 𝐷 𝑌 ) ) ∈ V |
14 |
4 13
|
eqeltri |
⊢ 𝐺 ∈ V |
15 |
14
|
a1i |
⊢ ( 𝜑 → 𝐺 ∈ V ) |
16 |
|
fveq2 |
⊢ ( 𝑥 = 𝑘 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑘 ) ) |
17 |
16
|
oveq1d |
⊢ ( 𝑥 = 𝑘 → ( ( 𝐹 ‘ 𝑥 ) 𝐷 𝑌 ) = ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 ) ) |
18 |
|
ovex |
⊢ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 ) ∈ V |
19 |
17 4 18
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( 𝐺 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 ) ) |
20 |
19
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 ) ) |
21 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
22 |
2
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
23 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑌 ∈ 𝑋 ) |
24 |
|
metcl |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ 𝑌 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 ) ∈ ℝ ) |
25 |
21 22 23 24
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 ) ∈ ℝ ) |
26 |
25
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 ) ∈ ℂ ) |
27 |
8 9 15 20 26
|
clim0c |
⊢ ( 𝜑 → ( 𝐺 ⇝ 0 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 ) ) < 𝑥 ) ) |
28 |
|
eluznn |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ ℕ ) |
29 |
|
metge0 |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ 𝑌 ∈ 𝑋 ) → 0 ≤ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 ) ) |
30 |
21 22 23 29
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 ) ) |
31 |
25 30
|
absidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 ) ) = ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 ) ) |
32 |
31
|
breq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 ) ) < 𝑥 ↔ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 ) < 𝑥 ) ) |
33 |
28 32
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 ) ) < 𝑥 ↔ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 ) < 𝑥 ) ) |
34 |
33
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 ) ) < 𝑥 ↔ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 ) < 𝑥 ) ) |
35 |
34
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 ) ) < 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 ) < 𝑥 ) ) |
36 |
35
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 ) ) < 𝑥 ↔ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 ) < 𝑥 ) ) |
37 |
36
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 ) ) < 𝑥 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 ) < 𝑥 ) ) |
38 |
5
|
biantrurd |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 ) < 𝑥 ↔ ( 𝑌 ∈ 𝑋 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 ) < 𝑥 ) ) ) |
39 |
27 37 38
|
3bitrrd |
⊢ ( 𝜑 → ( ( 𝑌 ∈ 𝑋 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑌 ) < 𝑥 ) ↔ 𝐺 ⇝ 0 ) ) |
40 |
11 39
|
bitrd |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑌 ↔ 𝐺 ⇝ 0 ) ) |