| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmclim2.2 | ⊢ ( 𝜑  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 2 |  | lmclim2.3 | ⊢ ( 𝜑  →  𝐹 : ℕ ⟶ 𝑋 ) | 
						
							| 3 |  | geomcau.4 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 4 |  | geomcau.5 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ+ ) | 
						
							| 5 |  | geomcau.6 | ⊢ ( 𝜑  →  𝐵  <  1 ) | 
						
							| 6 |  | geomcau.7 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘  +  1 ) ) )  ≤  ( 𝐴  ·  ( 𝐵 ↑ 𝑘 ) ) ) | 
						
							| 7 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 8 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 9 | 4 | rpcnd | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 10 | 4 | rpred | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 11 | 4 | rpge0d | ⊢ ( 𝜑  →  0  ≤  𝐵 ) | 
						
							| 12 | 10 11 | absidd | ⊢ ( 𝜑  →  ( abs ‘ 𝐵 )  =  𝐵 ) | 
						
							| 13 | 12 5 | eqbrtrd | ⊢ ( 𝜑  →  ( abs ‘ 𝐵 )  <  1 ) | 
						
							| 14 | 9 13 | expcnv | ⊢ ( 𝜑  →  ( 𝑚  ∈  ℕ0  ↦  ( 𝐵 ↑ 𝑚 ) )  ⇝  0 ) | 
						
							| 15 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 16 |  | resubcl | ⊢ ( ( 1  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 1  −  𝐵 )  ∈  ℝ ) | 
						
							| 17 | 15 10 16 | sylancr | ⊢ ( 𝜑  →  ( 1  −  𝐵 )  ∈  ℝ ) | 
						
							| 18 |  | posdif | ⊢ ( ( 𝐵  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( 𝐵  <  1  ↔  0  <  ( 1  −  𝐵 ) ) ) | 
						
							| 19 | 10 15 18 | sylancl | ⊢ ( 𝜑  →  ( 𝐵  <  1  ↔  0  <  ( 1  −  𝐵 ) ) ) | 
						
							| 20 | 5 19 | mpbid | ⊢ ( 𝜑  →  0  <  ( 1  −  𝐵 ) ) | 
						
							| 21 | 17 20 | elrpd | ⊢ ( 𝜑  →  ( 1  −  𝐵 )  ∈  ℝ+ ) | 
						
							| 22 | 3 21 | rerpdivcld | ⊢ ( 𝜑  →  ( 𝐴  /  ( 1  −  𝐵 ) )  ∈  ℝ ) | 
						
							| 23 | 22 | recnd | ⊢ ( 𝜑  →  ( 𝐴  /  ( 1  −  𝐵 ) )  ∈  ℂ ) | 
						
							| 24 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 25 | 24 | mptex | ⊢ ( 𝑚  ∈  ℕ  ↦  ( ( 𝐵 ↑ 𝑚 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) ) )  ∈  V | 
						
							| 26 | 25 | a1i | ⊢ ( 𝜑  →  ( 𝑚  ∈  ℕ  ↦  ( ( 𝐵 ↑ 𝑚 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) ) )  ∈  V ) | 
						
							| 27 |  | nnnn0 | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℕ0 ) | 
						
							| 28 | 27 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℕ0 ) | 
						
							| 29 |  | oveq2 | ⊢ ( 𝑚  =  𝑛  →  ( 𝐵 ↑ 𝑚 )  =  ( 𝐵 ↑ 𝑛 ) ) | 
						
							| 30 |  | eqid | ⊢ ( 𝑚  ∈  ℕ0  ↦  ( 𝐵 ↑ 𝑚 ) )  =  ( 𝑚  ∈  ℕ0  ↦  ( 𝐵 ↑ 𝑚 ) ) | 
						
							| 31 |  | ovex | ⊢ ( 𝐵 ↑ 𝑛 )  ∈  V | 
						
							| 32 | 29 30 31 | fvmpt | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( 𝑚  ∈  ℕ0  ↦  ( 𝐵 ↑ 𝑚 ) ) ‘ 𝑛 )  =  ( 𝐵 ↑ 𝑛 ) ) | 
						
							| 33 | 28 32 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑚  ∈  ℕ0  ↦  ( 𝐵 ↑ 𝑚 ) ) ‘ 𝑛 )  =  ( 𝐵 ↑ 𝑛 ) ) | 
						
							| 34 |  | nnz | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℤ ) | 
						
							| 35 |  | rpexpcl | ⊢ ( ( 𝐵  ∈  ℝ+  ∧  𝑛  ∈  ℤ )  →  ( 𝐵 ↑ 𝑛 )  ∈  ℝ+ ) | 
						
							| 36 | 4 34 35 | syl2an | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐵 ↑ 𝑛 )  ∈  ℝ+ ) | 
						
							| 37 | 36 | rpcnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐵 ↑ 𝑛 )  ∈  ℂ ) | 
						
							| 38 | 33 37 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑚  ∈  ℕ0  ↦  ( 𝐵 ↑ 𝑚 ) ) ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 39 | 23 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐴  /  ( 1  −  𝐵 ) )  ∈  ℂ ) | 
						
							| 40 | 37 39 | mulcomd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐵 ↑ 𝑛 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) )  =  ( ( 𝐴  /  ( 1  −  𝐵 ) )  ·  ( 𝐵 ↑ 𝑛 ) ) ) | 
						
							| 41 | 29 | oveq1d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝐵 ↑ 𝑚 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) )  =  ( ( 𝐵 ↑ 𝑛 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) ) ) | 
						
							| 42 |  | eqid | ⊢ ( 𝑚  ∈  ℕ  ↦  ( ( 𝐵 ↑ 𝑚 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) ) )  =  ( 𝑚  ∈  ℕ  ↦  ( ( 𝐵 ↑ 𝑚 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) ) ) | 
						
							| 43 |  | ovex | ⊢ ( ( 𝐵 ↑ 𝑛 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) )  ∈  V | 
						
							| 44 | 41 42 43 | fvmpt | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 𝑚  ∈  ℕ  ↦  ( ( 𝐵 ↑ 𝑚 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) ) ) ‘ 𝑛 )  =  ( ( 𝐵 ↑ 𝑛 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) ) ) | 
						
							| 45 | 44 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑚  ∈  ℕ  ↦  ( ( 𝐵 ↑ 𝑚 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) ) ) ‘ 𝑛 )  =  ( ( 𝐵 ↑ 𝑛 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) ) ) | 
						
							| 46 | 33 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐴  /  ( 1  −  𝐵 ) )  ·  ( ( 𝑚  ∈  ℕ0  ↦  ( 𝐵 ↑ 𝑚 ) ) ‘ 𝑛 ) )  =  ( ( 𝐴  /  ( 1  −  𝐵 ) )  ·  ( 𝐵 ↑ 𝑛 ) ) ) | 
						
							| 47 | 40 45 46 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑚  ∈  ℕ  ↦  ( ( 𝐵 ↑ 𝑚 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) ) ) ‘ 𝑛 )  =  ( ( 𝐴  /  ( 1  −  𝐵 ) )  ·  ( ( 𝑚  ∈  ℕ0  ↦  ( 𝐵 ↑ 𝑚 ) ) ‘ 𝑛 ) ) ) | 
						
							| 48 | 7 8 14 23 26 38 47 | climmulc2 | ⊢ ( 𝜑  →  ( 𝑚  ∈  ℕ  ↦  ( ( 𝐵 ↑ 𝑚 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) ) )  ⇝  ( ( 𝐴  /  ( 1  −  𝐵 ) )  ·  0 ) ) | 
						
							| 49 | 23 | mul01d | ⊢ ( 𝜑  →  ( ( 𝐴  /  ( 1  −  𝐵 ) )  ·  0 )  =  0 ) | 
						
							| 50 | 48 49 | breqtrd | ⊢ ( 𝜑  →  ( 𝑚  ∈  ℕ  ↦  ( ( 𝐵 ↑ 𝑚 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) ) )  ⇝  0 ) | 
						
							| 51 | 36 | rpred | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐵 ↑ 𝑛 )  ∈  ℝ ) | 
						
							| 52 | 22 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐴  /  ( 1  −  𝐵 ) )  ∈  ℝ ) | 
						
							| 53 | 51 52 | remulcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐵 ↑ 𝑛 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) )  ∈  ℝ ) | 
						
							| 54 | 53 | recnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐵 ↑ 𝑛 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) )  ∈  ℂ ) | 
						
							| 55 | 7 8 26 45 54 | clim0c | ⊢ ( 𝜑  →  ( ( 𝑚  ∈  ℕ  ↦  ( ( 𝐵 ↑ 𝑚 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) ) )  ⇝  0  ↔  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℕ ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐵 ↑ 𝑛 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) ) )  <  𝑥 ) ) | 
						
							| 56 | 50 55 | mpbid | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℕ ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐵 ↑ 𝑛 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) ) )  <  𝑥 ) | 
						
							| 57 |  | nnz | ⊢ ( 𝑗  ∈  ℕ  →  𝑗  ∈  ℤ ) | 
						
							| 58 | 57 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  𝑗  ∈  ℤ ) | 
						
							| 59 |  | uzid | ⊢ ( 𝑗  ∈  ℤ  →  𝑗  ∈  ( ℤ≥ ‘ 𝑗 ) ) | 
						
							| 60 |  | oveq2 | ⊢ ( 𝑛  =  𝑗  →  ( 𝐵 ↑ 𝑛 )  =  ( 𝐵 ↑ 𝑗 ) ) | 
						
							| 61 | 60 | fvoveq1d | ⊢ ( 𝑛  =  𝑗  →  ( abs ‘ ( ( 𝐵 ↑ 𝑛 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) ) )  =  ( abs ‘ ( ( 𝐵 ↑ 𝑗 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) ) ) ) | 
						
							| 62 | 61 | breq1d | ⊢ ( 𝑛  =  𝑗  →  ( ( abs ‘ ( ( 𝐵 ↑ 𝑛 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) ) )  <  𝑥  ↔  ( abs ‘ ( ( 𝐵 ↑ 𝑗 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) ) )  <  𝑥 ) ) | 
						
							| 63 | 62 | rspcv | ⊢ ( 𝑗  ∈  ( ℤ≥ ‘ 𝑗 )  →  ( ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐵 ↑ 𝑛 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) ) )  <  𝑥  →  ( abs ‘ ( ( 𝐵 ↑ 𝑗 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) ) )  <  𝑥 ) ) | 
						
							| 64 | 58 59 63 | 3syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  ( ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐵 ↑ 𝑛 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) ) )  <  𝑥  →  ( abs ‘ ( ( 𝐵 ↑ 𝑗 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) ) )  <  𝑥 ) ) | 
						
							| 65 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 66 |  | simpl | ⊢ ( ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑗  ∈  ℕ ) | 
						
							| 67 |  | ffvelcdm | ⊢ ( ( 𝐹 : ℕ ⟶ 𝑋  ∧  𝑗  ∈  ℕ )  →  ( 𝐹 ‘ 𝑗 )  ∈  𝑋 ) | 
						
							| 68 | 2 66 67 | syl2an | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( 𝐹 ‘ 𝑗 )  ∈  𝑋 ) | 
						
							| 69 |  | eluznn | ⊢ ( ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑛  ∈  ℕ ) | 
						
							| 70 |  | ffvelcdm | ⊢ ( ( 𝐹 : ℕ ⟶ 𝑋  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  ∈  𝑋 ) | 
						
							| 71 | 2 69 70 | syl2an | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( 𝐹 ‘ 𝑛 )  ∈  𝑋 ) | 
						
							| 72 |  | metcl | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  ( 𝐹 ‘ 𝑗 )  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑛 )  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑛 ) )  ∈  ℝ ) | 
						
							| 73 | 65 68 71 72 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑛 ) )  ∈  ℝ ) | 
						
							| 74 |  | eqid | ⊢ ( ℤ≥ ‘ 𝑗 )  =  ( ℤ≥ ‘ 𝑗 ) | 
						
							| 75 |  | nnnn0 | ⊢ ( 𝑗  ∈  ℕ  →  𝑗  ∈  ℕ0 ) | 
						
							| 76 | 75 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  𝑗  ∈  ℕ0 ) | 
						
							| 77 | 76 | nn0zd | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  𝑗  ∈  ℤ ) | 
						
							| 78 |  | oveq2 | ⊢ ( 𝑚  =  𝑘  →  ( 𝐵 ↑ 𝑚 )  =  ( 𝐵 ↑ 𝑘 ) ) | 
						
							| 79 | 78 | oveq2d | ⊢ ( 𝑚  =  𝑘  →  ( 𝐴  ·  ( 𝐵 ↑ 𝑚 ) )  =  ( 𝐴  ·  ( 𝐵 ↑ 𝑘 ) ) ) | 
						
							| 80 |  | eqid | ⊢ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑗 )  ↦  ( 𝐴  ·  ( 𝐵 ↑ 𝑚 ) ) )  =  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑗 )  ↦  ( 𝐴  ·  ( 𝐵 ↑ 𝑚 ) ) ) | 
						
							| 81 |  | ovex | ⊢ ( 𝐴  ·  ( 𝐵 ↑ 𝑘 ) )  ∈  V | 
						
							| 82 | 79 80 81 | fvmpt | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 𝑗 )  →  ( ( 𝑚  ∈  ( ℤ≥ ‘ 𝑗 )  ↦  ( 𝐴  ·  ( 𝐵 ↑ 𝑚 ) ) ) ‘ 𝑘 )  =  ( 𝐴  ·  ( 𝐵 ↑ 𝑘 ) ) ) | 
						
							| 83 | 82 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( 𝑚  ∈  ( ℤ≥ ‘ 𝑗 )  ↦  ( 𝐴  ·  ( 𝐵 ↑ 𝑚 ) ) ) ‘ 𝑘 )  =  ( 𝐴  ·  ( 𝐵 ↑ 𝑘 ) ) ) | 
						
							| 84 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 85 | 10 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 86 |  | eluznn0 | ⊢ ( ( 𝑗  ∈  ℕ0  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 87 | 76 86 | sylan | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 88 | 85 87 | reexpcld | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝐵 ↑ 𝑘 )  ∈  ℝ ) | 
						
							| 89 | 84 88 | remulcld | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝐴  ·  ( 𝐵 ↑ 𝑘 ) )  ∈  ℝ ) | 
						
							| 90 | 89 | recnd | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝐴  ·  ( 𝐵 ↑ 𝑘 ) )  ∈  ℂ ) | 
						
							| 91 | 3 | recnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 92 | 91 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  𝐴  ∈  ℂ ) | 
						
							| 93 | 9 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  𝐵  ∈  ℂ ) | 
						
							| 94 | 13 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( abs ‘ 𝐵 )  <  1 ) | 
						
							| 95 |  | eqid | ⊢ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑗 )  ↦  ( 𝐵 ↑ 𝑚 ) )  =  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑗 )  ↦  ( 𝐵 ↑ 𝑚 ) ) | 
						
							| 96 |  | ovex | ⊢ ( 𝐵 ↑ 𝑘 )  ∈  V | 
						
							| 97 | 78 95 96 | fvmpt | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 𝑗 )  →  ( ( 𝑚  ∈  ( ℤ≥ ‘ 𝑗 )  ↦  ( 𝐵 ↑ 𝑚 ) ) ‘ 𝑘 )  =  ( 𝐵 ↑ 𝑘 ) ) | 
						
							| 98 | 97 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( 𝑚  ∈  ( ℤ≥ ‘ 𝑗 )  ↦  ( 𝐵 ↑ 𝑚 ) ) ‘ 𝑘 )  =  ( 𝐵 ↑ 𝑘 ) ) | 
						
							| 99 | 93 94 76 98 | geolim2 | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  seq 𝑗 (  +  ,  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑗 )  ↦  ( 𝐵 ↑ 𝑚 ) ) )  ⇝  ( ( 𝐵 ↑ 𝑗 )  /  ( 1  −  𝐵 ) ) ) | 
						
							| 100 | 88 | recnd | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝐵 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 101 | 98 100 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( 𝑚  ∈  ( ℤ≥ ‘ 𝑗 )  ↦  ( 𝐵 ↑ 𝑚 ) ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 102 | 98 | oveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝐴  ·  ( ( 𝑚  ∈  ( ℤ≥ ‘ 𝑗 )  ↦  ( 𝐵 ↑ 𝑚 ) ) ‘ 𝑘 ) )  =  ( 𝐴  ·  ( 𝐵 ↑ 𝑘 ) ) ) | 
						
							| 103 | 83 102 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( 𝑚  ∈  ( ℤ≥ ‘ 𝑗 )  ↦  ( 𝐴  ·  ( 𝐵 ↑ 𝑚 ) ) ) ‘ 𝑘 )  =  ( 𝐴  ·  ( ( 𝑚  ∈  ( ℤ≥ ‘ 𝑗 )  ↦  ( 𝐵 ↑ 𝑚 ) ) ‘ 𝑘 ) ) ) | 
						
							| 104 | 74 77 92 99 101 103 | isermulc2 | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  seq 𝑗 (  +  ,  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑗 )  ↦  ( 𝐴  ·  ( 𝐵 ↑ 𝑚 ) ) ) )  ⇝  ( 𝐴  ·  ( ( 𝐵 ↑ 𝑗 )  /  ( 1  −  𝐵 ) ) ) ) | 
						
							| 105 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  𝐵  ∈  ℝ+ ) | 
						
							| 106 | 105 77 | rpexpcld | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( 𝐵 ↑ 𝑗 )  ∈  ℝ+ ) | 
						
							| 107 | 106 | rpcnd | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( 𝐵 ↑ 𝑗 )  ∈  ℂ ) | 
						
							| 108 | 17 | recnd | ⊢ ( 𝜑  →  ( 1  −  𝐵 )  ∈  ℂ ) | 
						
							| 109 | 108 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( 1  −  𝐵 )  ∈  ℂ ) | 
						
							| 110 | 21 | rpne0d | ⊢ ( 𝜑  →  ( 1  −  𝐵 )  ≠  0 ) | 
						
							| 111 | 110 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( 1  −  𝐵 )  ≠  0 ) | 
						
							| 112 | 92 107 109 111 | div12d | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( 𝐴  ·  ( ( 𝐵 ↑ 𝑗 )  /  ( 1  −  𝐵 ) ) )  =  ( ( 𝐵 ↑ 𝑗 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) ) ) | 
						
							| 113 | 104 112 | breqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  seq 𝑗 (  +  ,  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑗 )  ↦  ( 𝐴  ·  ( 𝐵 ↑ 𝑚 ) ) ) )  ⇝  ( ( 𝐵 ↑ 𝑗 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) ) ) | 
						
							| 114 | 74 77 83 90 113 | isumclim | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐴  ·  ( 𝐵 ↑ 𝑘 ) )  =  ( ( 𝐵 ↑ 𝑗 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) ) ) | 
						
							| 115 |  | seqex | ⊢ seq 𝑗 (  +  ,  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑗 )  ↦  ( 𝐴  ·  ( 𝐵 ↑ 𝑚 ) ) ) )  ∈  V | 
						
							| 116 |  | ovex | ⊢ ( 𝐴  ·  ( ( 𝐵 ↑ 𝑗 )  /  ( 1  −  𝐵 ) ) )  ∈  V | 
						
							| 117 | 115 116 | breldm | ⊢ ( seq 𝑗 (  +  ,  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑗 )  ↦  ( 𝐴  ·  ( 𝐵 ↑ 𝑚 ) ) ) )  ⇝  ( 𝐴  ·  ( ( 𝐵 ↑ 𝑗 )  /  ( 1  −  𝐵 ) ) )  →  seq 𝑗 (  +  ,  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑗 )  ↦  ( 𝐴  ·  ( 𝐵 ↑ 𝑚 ) ) ) )  ∈  dom   ⇝  ) | 
						
							| 118 | 104 117 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  seq 𝑗 (  +  ,  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑗 )  ↦  ( 𝐴  ·  ( 𝐵 ↑ 𝑚 ) ) ) )  ∈  dom   ⇝  ) | 
						
							| 119 | 74 77 83 89 118 | isumrecl | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐴  ·  ( 𝐵 ↑ 𝑘 ) )  ∈  ℝ ) | 
						
							| 120 | 114 119 | eqeltrrd | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ( 𝐵 ↑ 𝑗 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) )  ∈  ℝ ) | 
						
							| 121 | 120 | recnd | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ( 𝐵 ↑ 𝑗 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) )  ∈  ℂ ) | 
						
							| 122 | 121 | abscld | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( abs ‘ ( ( 𝐵 ↑ 𝑗 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) ) )  ∈  ℝ ) | 
						
							| 123 |  | fzfid | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( 𝑗 ... ( 𝑛  −  1 ) )  ∈  Fin ) | 
						
							| 124 |  | simpll | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  ∧  𝑘  ∈  ( 𝑗 ... ( 𝑛  −  1 ) ) )  →  𝜑 ) | 
						
							| 125 |  | elfzuz | ⊢ ( 𝑘  ∈  ( 𝑗 ... ( 𝑛  −  1 ) )  →  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) | 
						
							| 126 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  𝑗  ∈  ℕ ) | 
						
							| 127 |  | eluznn | ⊢ ( ( 𝑗  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑘  ∈  ℕ ) | 
						
							| 128 | 126 127 | sylan | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑘  ∈  ℕ ) | 
						
							| 129 | 125 128 | sylan2 | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  ∧  𝑘  ∈  ( 𝑗 ... ( 𝑛  −  1 ) ) )  →  𝑘  ∈  ℕ ) | 
						
							| 130 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 131 | 2 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐹 ‘ 𝑘 )  ∈  𝑋 ) | 
						
							| 132 |  | peano2nn | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝑘  +  1 )  ∈  ℕ ) | 
						
							| 133 |  | ffvelcdm | ⊢ ( ( 𝐹 : ℕ ⟶ 𝑋  ∧  ( 𝑘  +  1 )  ∈  ℕ )  →  ( 𝐹 ‘ ( 𝑘  +  1 ) )  ∈  𝑋 ) | 
						
							| 134 | 2 132 133 | syl2an | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐹 ‘ ( 𝑘  +  1 ) )  ∈  𝑋 ) | 
						
							| 135 |  | metcl | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( 𝐹 ‘ ( 𝑘  +  1 ) )  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘  +  1 ) ) )  ∈  ℝ ) | 
						
							| 136 | 130 131 134 135 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘  +  1 ) ) )  ∈  ℝ ) | 
						
							| 137 | 124 129 136 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  ∧  𝑘  ∈  ( 𝑗 ... ( 𝑛  −  1 ) ) )  →  ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘  +  1 ) ) )  ∈  ℝ ) | 
						
							| 138 | 123 137 | fsumrecl | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  Σ 𝑘  ∈  ( 𝑗 ... ( 𝑛  −  1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘  +  1 ) ) )  ∈  ℝ ) | 
						
							| 139 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) | 
						
							| 140 |  | elfzuz | ⊢ ( 𝑘  ∈  ( 𝑗 ... 𝑛 )  →  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) | 
						
							| 141 |  | simpll | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝜑 ) | 
						
							| 142 | 141 128 131 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  𝑋 ) | 
						
							| 143 | 140 142 | sylan2 | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  ∧  𝑘  ∈  ( 𝑗 ... 𝑛 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  𝑋 ) | 
						
							| 144 | 65 139 143 | mettrifi | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑛 ) )  ≤  Σ 𝑘  ∈  ( 𝑗 ... ( 𝑛  −  1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 145 | 125 89 | sylan2 | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  ∧  𝑘  ∈  ( 𝑗 ... ( 𝑛  −  1 ) ) )  →  ( 𝐴  ·  ( 𝐵 ↑ 𝑘 ) )  ∈  ℝ ) | 
						
							| 146 | 123 145 | fsumrecl | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  Σ 𝑘  ∈  ( 𝑗 ... ( 𝑛  −  1 ) ) ( 𝐴  ·  ( 𝐵 ↑ 𝑘 ) )  ∈  ℝ ) | 
						
							| 147 | 124 129 6 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  ∧  𝑘  ∈  ( 𝑗 ... ( 𝑛  −  1 ) ) )  →  ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘  +  1 ) ) )  ≤  ( 𝐴  ·  ( 𝐵 ↑ 𝑘 ) ) ) | 
						
							| 148 | 123 137 145 147 | fsumle | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  Σ 𝑘  ∈  ( 𝑗 ... ( 𝑛  −  1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘  +  1 ) ) )  ≤  Σ 𝑘  ∈  ( 𝑗 ... ( 𝑛  −  1 ) ) ( 𝐴  ·  ( 𝐵 ↑ 𝑘 ) ) ) | 
						
							| 149 |  | fzssuz | ⊢ ( 𝑗 ... ( 𝑛  −  1 ) )  ⊆  ( ℤ≥ ‘ 𝑗 ) | 
						
							| 150 | 149 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( 𝑗 ... ( 𝑛  −  1 ) )  ⊆  ( ℤ≥ ‘ 𝑗 ) ) | 
						
							| 151 |  | 0red | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  0  ∈  ℝ ) | 
						
							| 152 |  | nnz | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℤ ) | 
						
							| 153 |  | rpexpcl | ⊢ ( ( 𝐵  ∈  ℝ+  ∧  𝑘  ∈  ℤ )  →  ( 𝐵 ↑ 𝑘 )  ∈  ℝ+ ) | 
						
							| 154 | 4 152 153 | syl2an | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐵 ↑ 𝑘 )  ∈  ℝ+ ) | 
						
							| 155 | 136 154 | rerpdivcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘  +  1 ) ) )  /  ( 𝐵 ↑ 𝑘 ) )  ∈  ℝ ) | 
						
							| 156 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  𝐴  ∈  ℝ ) | 
						
							| 157 |  | metge0 | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( 𝐹 ‘ ( 𝑘  +  1 ) )  ∈  𝑋 )  →  0  ≤  ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 158 | 130 131 134 157 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  0  ≤  ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 159 | 136 154 158 | divge0d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  0  ≤  ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘  +  1 ) ) )  /  ( 𝐵 ↑ 𝑘 ) ) ) | 
						
							| 160 | 136 156 154 | ledivmul2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘  +  1 ) ) )  /  ( 𝐵 ↑ 𝑘 ) )  ≤  𝐴  ↔  ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘  +  1 ) ) )  ≤  ( 𝐴  ·  ( 𝐵 ↑ 𝑘 ) ) ) ) | 
						
							| 161 | 6 160 | mpbird | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘  +  1 ) ) )  /  ( 𝐵 ↑ 𝑘 ) )  ≤  𝐴 ) | 
						
							| 162 | 151 155 156 159 161 | letrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  0  ≤  𝐴 ) | 
						
							| 163 | 141 128 162 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  0  ≤  𝐴 ) | 
						
							| 164 | 141 128 154 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝐵 ↑ 𝑘 )  ∈  ℝ+ ) | 
						
							| 165 | 164 | rpge0d | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  0  ≤  ( 𝐵 ↑ 𝑘 ) ) | 
						
							| 166 | 84 88 163 165 | mulge0d | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  0  ≤  ( 𝐴  ·  ( 𝐵 ↑ 𝑘 ) ) ) | 
						
							| 167 | 74 77 123 150 83 89 166 118 | isumless | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  Σ 𝑘  ∈  ( 𝑗 ... ( 𝑛  −  1 ) ) ( 𝐴  ·  ( 𝐵 ↑ 𝑘 ) )  ≤  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐴  ·  ( 𝐵 ↑ 𝑘 ) ) ) | 
						
							| 168 | 138 146 119 148 167 | letrd | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  Σ 𝑘  ∈  ( 𝑗 ... ( 𝑛  −  1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘  +  1 ) ) )  ≤  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐴  ·  ( 𝐵 ↑ 𝑘 ) ) ) | 
						
							| 169 | 73 138 119 144 168 | letrd | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑛 ) )  ≤  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐴  ·  ( 𝐵 ↑ 𝑘 ) ) ) | 
						
							| 170 | 169 114 | breqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑛 ) )  ≤  ( ( 𝐵 ↑ 𝑗 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) ) ) | 
						
							| 171 | 120 | leabsd | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ( 𝐵 ↑ 𝑗 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) )  ≤  ( abs ‘ ( ( 𝐵 ↑ 𝑗 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) ) ) ) | 
						
							| 172 | 73 120 122 170 171 | letrd | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑛 ) )  ≤  ( abs ‘ ( ( 𝐵 ↑ 𝑗 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) ) ) ) | 
						
							| 173 | 172 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑛 ) )  ≤  ( abs ‘ ( ( 𝐵 ↑ 𝑗 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) ) ) ) | 
						
							| 174 | 73 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑛 ) )  ∈  ℝ ) | 
						
							| 175 | 122 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( abs ‘ ( ( 𝐵 ↑ 𝑗 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) ) )  ∈  ℝ ) | 
						
							| 176 |  | rpre | ⊢ ( 𝑥  ∈  ℝ+  →  𝑥  ∈  ℝ ) | 
						
							| 177 | 176 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  𝑥  ∈  ℝ ) | 
						
							| 178 |  | lelttr | ⊢ ( ( ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑛 ) )  ∈  ℝ  ∧  ( abs ‘ ( ( 𝐵 ↑ 𝑗 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) ) )  ∈  ℝ  ∧  𝑥  ∈  ℝ )  →  ( ( ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑛 ) )  ≤  ( abs ‘ ( ( 𝐵 ↑ 𝑗 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) ) )  ∧  ( abs ‘ ( ( 𝐵 ↑ 𝑗 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) ) )  <  𝑥 )  →  ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑛 ) )  <  𝑥 ) ) | 
						
							| 179 | 174 175 177 178 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ( ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑛 ) )  ≤  ( abs ‘ ( ( 𝐵 ↑ 𝑗 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) ) )  ∧  ( abs ‘ ( ( 𝐵 ↑ 𝑗 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) ) )  <  𝑥 )  →  ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑛 ) )  <  𝑥 ) ) | 
						
							| 180 | 173 179 | mpand | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ( abs ‘ ( ( 𝐵 ↑ 𝑗 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) ) )  <  𝑥  →  ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑛 ) )  <  𝑥 ) ) | 
						
							| 181 | 180 | anassrs | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( abs ‘ ( ( 𝐵 ↑ 𝑗 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) ) )  <  𝑥  →  ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑛 ) )  <  𝑥 ) ) | 
						
							| 182 | 181 | ralrimdva | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  ( ( abs ‘ ( ( 𝐵 ↑ 𝑗 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) ) )  <  𝑥  →  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑛 ) )  <  𝑥 ) ) | 
						
							| 183 | 64 182 | syld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  ( ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐵 ↑ 𝑛 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) ) )  <  𝑥  →  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑛 ) )  <  𝑥 ) ) | 
						
							| 184 | 183 | reximdva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( ∃ 𝑗  ∈  ℕ ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐵 ↑ 𝑛 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) ) )  <  𝑥  →  ∃ 𝑗  ∈  ℕ ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑛 ) )  <  𝑥 ) ) | 
						
							| 185 | 184 | ralimdva | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℕ ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐵 ↑ 𝑛 )  ·  ( 𝐴  /  ( 1  −  𝐵 ) ) ) )  <  𝑥  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℕ ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑛 ) )  <  𝑥 ) ) | 
						
							| 186 | 56 185 | mpd | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℕ ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑛 ) )  <  𝑥 ) | 
						
							| 187 |  | metxmet | ⊢ ( 𝐷  ∈  ( Met ‘ 𝑋 )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 188 | 1 187 | syl | ⊢ ( 𝜑  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 189 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 190 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐹 ‘ 𝑗 )  =  ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 191 | 7 188 8 189 190 2 | iscauf | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( Cau ‘ 𝐷 )  ↔  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℕ ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑛 ) )  <  𝑥 ) ) | 
						
							| 192 | 186 191 | mpbird | ⊢ ( 𝜑  →  𝐹  ∈  ( Cau ‘ 𝐷 ) ) |