| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mettrifi.2 |
⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 2 |
|
mettrifi.3 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 3 |
|
mettrifi.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
| 4 |
|
eluzfz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) |
| 5 |
2 4
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) |
| 6 |
|
eleq1 |
⊢ ( 𝑥 = 𝑀 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) ) |
| 7 |
|
fveq2 |
⊢ ( 𝑥 = 𝑀 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑀 ) ) |
| 8 |
7
|
oveq2d |
⊢ ( 𝑥 = 𝑀 → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑀 ) ) ) |
| 9 |
|
oveq1 |
⊢ ( 𝑥 = 𝑀 → ( 𝑥 − 1 ) = ( 𝑀 − 1 ) ) |
| 10 |
9
|
oveq2d |
⊢ ( 𝑥 = 𝑀 → ( 𝑀 ... ( 𝑥 − 1 ) ) = ( 𝑀 ... ( 𝑀 − 1 ) ) ) |
| 11 |
10
|
sumeq1d |
⊢ ( 𝑥 = 𝑀 → Σ 𝑘 ∈ ( 𝑀 ... ( 𝑥 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = Σ 𝑘 ∈ ( 𝑀 ... ( 𝑀 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 12 |
8 11
|
breq12d |
⊢ ( 𝑥 = 𝑀 → ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑥 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑥 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ↔ ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑀 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑀 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 13 |
6 12
|
imbi12d |
⊢ ( 𝑥 = 𝑀 → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑥 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑥 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ↔ ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑀 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑀 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 14 |
13
|
imbi2d |
⊢ ( 𝑥 = 𝑀 → ( ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑥 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑥 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ↔ ( 𝜑 → ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑀 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑀 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) ) |
| 15 |
|
eleq1 |
⊢ ( 𝑥 = 𝑛 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) ) |
| 16 |
|
fveq2 |
⊢ ( 𝑥 = 𝑛 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑛 ) ) |
| 17 |
16
|
oveq2d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ) |
| 18 |
|
oveq1 |
⊢ ( 𝑥 = 𝑛 → ( 𝑥 − 1 ) = ( 𝑛 − 1 ) ) |
| 19 |
18
|
oveq2d |
⊢ ( 𝑥 = 𝑛 → ( 𝑀 ... ( 𝑥 − 1 ) ) = ( 𝑀 ... ( 𝑛 − 1 ) ) ) |
| 20 |
19
|
sumeq1d |
⊢ ( 𝑥 = 𝑛 → Σ 𝑘 ∈ ( 𝑀 ... ( 𝑥 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = Σ 𝑘 ∈ ( 𝑀 ... ( 𝑛 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 21 |
17 20
|
breq12d |
⊢ ( 𝑥 = 𝑛 → ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑥 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑥 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ↔ ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑛 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 22 |
15 21
|
imbi12d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑥 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑥 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ↔ ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑛 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 23 |
22
|
imbi2d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑥 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑥 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ↔ ( 𝜑 → ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑛 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) ) |
| 24 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) |
| 25 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 26 |
25
|
oveq2d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 27 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝑥 − 1 ) = ( ( 𝑛 + 1 ) − 1 ) ) |
| 28 |
27
|
oveq2d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝑀 ... ( 𝑥 − 1 ) ) = ( 𝑀 ... ( ( 𝑛 + 1 ) − 1 ) ) ) |
| 29 |
28
|
sumeq1d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → Σ 𝑘 ∈ ( 𝑀 ... ( 𝑥 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = Σ 𝑘 ∈ ( 𝑀 ... ( ( 𝑛 + 1 ) − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 30 |
26 29
|
breq12d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑥 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑥 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ↔ ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( ( 𝑛 + 1 ) − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 31 |
24 30
|
imbi12d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑥 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑥 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ↔ ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( ( 𝑛 + 1 ) − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 32 |
31
|
imbi2d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑥 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑥 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ↔ ( 𝜑 → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( ( 𝑛 + 1 ) − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) ) |
| 33 |
|
eleq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) ) |
| 34 |
|
fveq2 |
⊢ ( 𝑥 = 𝑁 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑁 ) ) |
| 35 |
34
|
oveq2d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑁 ) ) ) |
| 36 |
|
oveq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝑥 − 1 ) = ( 𝑁 − 1 ) ) |
| 37 |
36
|
oveq2d |
⊢ ( 𝑥 = 𝑁 → ( 𝑀 ... ( 𝑥 − 1 ) ) = ( 𝑀 ... ( 𝑁 − 1 ) ) ) |
| 38 |
37
|
sumeq1d |
⊢ ( 𝑥 = 𝑁 → Σ 𝑘 ∈ ( 𝑀 ... ( 𝑥 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 39 |
35 38
|
breq12d |
⊢ ( 𝑥 = 𝑁 → ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑥 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑥 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ↔ ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑁 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 40 |
33 39
|
imbi12d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑥 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑥 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ↔ ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑁 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 41 |
40
|
imbi2d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑥 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑥 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ↔ ( 𝜑 → ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑁 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) ) |
| 42 |
|
0le0 |
⊢ 0 ≤ 0 |
| 43 |
42
|
a1i |
⊢ ( 𝜑 → 0 ≤ 0 ) |
| 44 |
|
eluzfz1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
| 45 |
2 44
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
| 46 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
| 47 |
|
fveq2 |
⊢ ( 𝑘 = 𝑀 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑀 ) ) |
| 48 |
47
|
eleq1d |
⊢ ( 𝑘 = 𝑀 → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ↔ ( 𝐹 ‘ 𝑀 ) ∈ 𝑋 ) ) |
| 49 |
48
|
rspcv |
⊢ ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 → ( 𝐹 ‘ 𝑀 ) ∈ 𝑋 ) ) |
| 50 |
45 46 49
|
sylc |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ∈ 𝑋 ) |
| 51 |
|
met0 |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑀 ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑀 ) ) = 0 ) |
| 52 |
1 50 51
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑀 ) ) = 0 ) |
| 53 |
|
eluzel2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
| 54 |
2 53
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 55 |
54
|
zred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 56 |
55
|
ltm1d |
⊢ ( 𝜑 → ( 𝑀 − 1 ) < 𝑀 ) |
| 57 |
|
peano2zm |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 − 1 ) ∈ ℤ ) |
| 58 |
|
fzn |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑀 − 1 ) ∈ ℤ ) → ( ( 𝑀 − 1 ) < 𝑀 ↔ ( 𝑀 ... ( 𝑀 − 1 ) ) = ∅ ) ) |
| 59 |
54 57 58
|
syl2anc2 |
⊢ ( 𝜑 → ( ( 𝑀 − 1 ) < 𝑀 ↔ ( 𝑀 ... ( 𝑀 − 1 ) ) = ∅ ) ) |
| 60 |
56 59
|
mpbid |
⊢ ( 𝜑 → ( 𝑀 ... ( 𝑀 − 1 ) ) = ∅ ) |
| 61 |
60
|
sumeq1d |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... ( 𝑀 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = Σ 𝑘 ∈ ∅ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 62 |
|
sum0 |
⊢ Σ 𝑘 ∈ ∅ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = 0 |
| 63 |
61 62
|
eqtrdi |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... ( 𝑀 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = 0 ) |
| 64 |
43 52 63
|
3brtr4d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑀 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑀 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 65 |
64
|
a1d |
⊢ ( 𝜑 → ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑀 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑀 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 66 |
65
|
a1i |
⊢ ( 𝑀 ∈ ℤ → ( 𝜑 → ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑀 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑀 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 67 |
|
peano2fzr |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) |
| 68 |
67
|
ex |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) ) |
| 69 |
68
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) ) |
| 70 |
69
|
imim1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑛 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑛 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 71 |
1
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 72 |
50
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑀 ) ∈ 𝑋 ) |
| 73 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) |
| 74 |
46
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
| 75 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 76 |
75
|
eleq1d |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ↔ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ 𝑋 ) ) |
| 77 |
76
|
rspcv |
⊢ ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ 𝑋 ) ) |
| 78 |
73 74 77
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ 𝑋 ) |
| 79 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑛 ) ) |
| 80 |
79
|
eleq1d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ↔ ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ) ) |
| 81 |
80
|
cbvralvw |
⊢ ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ↔ ∀ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ) |
| 82 |
74 81
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ∀ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ) |
| 83 |
69
|
3impia |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) |
| 84 |
|
rsp |
⊢ ( ∀ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 → ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ) ) |
| 85 |
82 83 84
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ) |
| 86 |
|
mettri |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑀 ) ∈ 𝑋 ∧ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ≤ ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑛 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 87 |
71 72 78 85 86
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ≤ ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑛 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 88 |
|
metcl |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑀 ) ∈ 𝑋 ∧ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∈ ℝ ) |
| 89 |
71 72 78 88
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∈ ℝ ) |
| 90 |
|
metcl |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑀 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ) |
| 91 |
71 72 85 90
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ) |
| 92 |
|
metcl |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ∧ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑛 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∈ ℝ ) |
| 93 |
71 85 78 92
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑛 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∈ ℝ ) |
| 94 |
91 93
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑛 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ∈ ℝ ) |
| 95 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝑀 ... 𝑛 ) ∈ Fin ) |
| 96 |
71
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 97 |
|
elfzuz3 |
⊢ ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
| 98 |
83 97
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
| 99 |
|
fzss2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑛 ) → ( 𝑀 ... 𝑛 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
| 100 |
98 99
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝑀 ... 𝑛 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
| 101 |
100
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) |
| 102 |
3
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
| 103 |
101 102
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
| 104 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑛 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 105 |
104
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 106 |
|
peano2uz |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 107 |
105 106
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 108 |
|
elfzuz3 |
⊢ ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) |
| 109 |
73 108
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) |
| 110 |
109
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) |
| 111 |
|
elfzuz3 |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑛 ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) |
| 112 |
111
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) |
| 113 |
|
eluzp1p1 |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) → ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ) |
| 114 |
112 113
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ) |
| 115 |
|
uztrn |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ) |
| 116 |
110 114 115
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ) |
| 117 |
|
elfzuzb |
⊢ ( ( 𝑘 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ↔ ( ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ) ) |
| 118 |
107 116 117
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝑘 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) |
| 119 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 120 |
119
|
eleq1d |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ↔ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ 𝑋 ) ) |
| 121 |
120
|
rspccva |
⊢ ( ( ∀ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ∧ ( 𝑘 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ 𝑋 ) |
| 122 |
82 121
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ 𝑋 ) |
| 123 |
118 122
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ 𝑋 ) |
| 124 |
|
metcl |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ∈ ℝ ) |
| 125 |
96 103 123 124
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ∈ ℝ ) |
| 126 |
95 125
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ∈ ℝ ) |
| 127 |
|
letr |
⊢ ( ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∈ ℝ ∧ ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑛 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ∈ ℝ ∧ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ∈ ℝ ) → ( ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ≤ ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑛 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ∧ ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑛 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 128 |
89 94 126 127
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ≤ ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑛 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ∧ ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑛 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 129 |
87 128
|
mpand |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑛 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 130 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝑀 ... ( 𝑛 − 1 ) ) ∈ Fin ) |
| 131 |
|
fzssp1 |
⊢ ( 𝑀 ... ( 𝑛 − 1 ) ) ⊆ ( 𝑀 ... ( ( 𝑛 − 1 ) + 1 ) ) |
| 132 |
|
eluzelz |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑛 ∈ ℤ ) |
| 133 |
132
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → 𝑛 ∈ ℤ ) |
| 134 |
133
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → 𝑛 ∈ ℂ ) |
| 135 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 136 |
|
npcan |
⊢ ( ( 𝑛 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑛 − 1 ) + 1 ) = 𝑛 ) |
| 137 |
134 135 136
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑛 − 1 ) + 1 ) = 𝑛 ) |
| 138 |
137
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝑀 ... ( ( 𝑛 − 1 ) + 1 ) ) = ( 𝑀 ... 𝑛 ) ) |
| 139 |
131 138
|
sseqtrid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝑀 ... ( 𝑛 − 1 ) ) ⊆ ( 𝑀 ... 𝑛 ) ) |
| 140 |
139
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑛 − 1 ) ) ) → 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) |
| 141 |
140 125
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑛 − 1 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ∈ ℝ ) |
| 142 |
130 141
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → Σ 𝑘 ∈ ( 𝑀 ... ( 𝑛 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ∈ ℝ ) |
| 143 |
91 142 93
|
leadd1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑛 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ↔ ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑛 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ≤ ( Σ 𝑘 ∈ ( 𝑀 ... ( 𝑛 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) + ( ( 𝐹 ‘ 𝑛 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
| 144 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 145 |
125
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ∈ ℂ ) |
| 146 |
|
fvoveq1 |
⊢ ( 𝑘 = 𝑛 → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 147 |
79 146
|
oveq12d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = ( ( 𝐹 ‘ 𝑛 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 148 |
144 145 147
|
fsumm1 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = ( Σ 𝑘 ∈ ( 𝑀 ... ( 𝑛 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) + ( ( 𝐹 ‘ 𝑛 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 149 |
148
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑛 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ↔ ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑛 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ≤ ( Σ 𝑘 ∈ ( 𝑀 ... ( 𝑛 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) + ( ( 𝐹 ‘ 𝑛 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
| 150 |
143 149
|
bitr4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑛 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ↔ ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑛 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 151 |
|
pncan |
⊢ ( ( 𝑛 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑛 + 1 ) − 1 ) = 𝑛 ) |
| 152 |
134 135 151
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑛 + 1 ) − 1 ) = 𝑛 ) |
| 153 |
152
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝑀 ... ( ( 𝑛 + 1 ) − 1 ) ) = ( 𝑀 ... 𝑛 ) ) |
| 154 |
153
|
sumeq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → Σ 𝑘 ∈ ( 𝑀 ... ( ( 𝑛 + 1 ) − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 155 |
154
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( ( 𝑛 + 1 ) − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ↔ ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 156 |
129 150 155
|
3imtr4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑛 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( ( 𝑛 + 1 ) − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 157 |
156
|
3expia |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑛 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( ( 𝑛 + 1 ) − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 158 |
157
|
a2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑛 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( ( 𝑛 + 1 ) − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 159 |
70 158
|
syld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑛 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( ( 𝑛 + 1 ) − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 160 |
159
|
expcom |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → ( ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑛 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( ( 𝑛 + 1 ) − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) ) |
| 161 |
160
|
a2d |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝜑 → ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑛 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) → ( 𝜑 → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( ( 𝑛 + 1 ) − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) ) |
| 162 |
14 23 32 41 66 161
|
uzind4 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑁 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 163 |
2 162
|
mpcom |
⊢ ( 𝜑 → ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑁 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 164 |
5 163
|
mpd |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑀 ) 𝐷 ( 𝐹 ‘ 𝑁 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |