| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmclim2.2 |  |-  ( ph -> D e. ( Met ` X ) ) | 
						
							| 2 |  | lmclim2.3 |  |-  ( ph -> F : NN --> X ) | 
						
							| 3 |  | geomcau.4 |  |-  ( ph -> A e. RR ) | 
						
							| 4 |  | geomcau.5 |  |-  ( ph -> B e. RR+ ) | 
						
							| 5 |  | geomcau.6 |  |-  ( ph -> B < 1 ) | 
						
							| 6 |  | geomcau.7 |  |-  ( ( ph /\ k e. NN ) -> ( ( F ` k ) D ( F ` ( k + 1 ) ) ) <_ ( A x. ( B ^ k ) ) ) | 
						
							| 7 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 8 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 9 | 4 | rpcnd |  |-  ( ph -> B e. CC ) | 
						
							| 10 | 4 | rpred |  |-  ( ph -> B e. RR ) | 
						
							| 11 | 4 | rpge0d |  |-  ( ph -> 0 <_ B ) | 
						
							| 12 | 10 11 | absidd |  |-  ( ph -> ( abs ` B ) = B ) | 
						
							| 13 | 12 5 | eqbrtrd |  |-  ( ph -> ( abs ` B ) < 1 ) | 
						
							| 14 | 9 13 | expcnv |  |-  ( ph -> ( m e. NN0 |-> ( B ^ m ) ) ~~> 0 ) | 
						
							| 15 |  | 1re |  |-  1 e. RR | 
						
							| 16 |  | resubcl |  |-  ( ( 1 e. RR /\ B e. RR ) -> ( 1 - B ) e. RR ) | 
						
							| 17 | 15 10 16 | sylancr |  |-  ( ph -> ( 1 - B ) e. RR ) | 
						
							| 18 |  | posdif |  |-  ( ( B e. RR /\ 1 e. RR ) -> ( B < 1 <-> 0 < ( 1 - B ) ) ) | 
						
							| 19 | 10 15 18 | sylancl |  |-  ( ph -> ( B < 1 <-> 0 < ( 1 - B ) ) ) | 
						
							| 20 | 5 19 | mpbid |  |-  ( ph -> 0 < ( 1 - B ) ) | 
						
							| 21 | 17 20 | elrpd |  |-  ( ph -> ( 1 - B ) e. RR+ ) | 
						
							| 22 | 3 21 | rerpdivcld |  |-  ( ph -> ( A / ( 1 - B ) ) e. RR ) | 
						
							| 23 | 22 | recnd |  |-  ( ph -> ( A / ( 1 - B ) ) e. CC ) | 
						
							| 24 |  | nnex |  |-  NN e. _V | 
						
							| 25 | 24 | mptex |  |-  ( m e. NN |-> ( ( B ^ m ) x. ( A / ( 1 - B ) ) ) ) e. _V | 
						
							| 26 | 25 | a1i |  |-  ( ph -> ( m e. NN |-> ( ( B ^ m ) x. ( A / ( 1 - B ) ) ) ) e. _V ) | 
						
							| 27 |  | nnnn0 |  |-  ( n e. NN -> n e. NN0 ) | 
						
							| 28 | 27 | adantl |  |-  ( ( ph /\ n e. NN ) -> n e. NN0 ) | 
						
							| 29 |  | oveq2 |  |-  ( m = n -> ( B ^ m ) = ( B ^ n ) ) | 
						
							| 30 |  | eqid |  |-  ( m e. NN0 |-> ( B ^ m ) ) = ( m e. NN0 |-> ( B ^ m ) ) | 
						
							| 31 |  | ovex |  |-  ( B ^ n ) e. _V | 
						
							| 32 | 29 30 31 | fvmpt |  |-  ( n e. NN0 -> ( ( m e. NN0 |-> ( B ^ m ) ) ` n ) = ( B ^ n ) ) | 
						
							| 33 | 28 32 | syl |  |-  ( ( ph /\ n e. NN ) -> ( ( m e. NN0 |-> ( B ^ m ) ) ` n ) = ( B ^ n ) ) | 
						
							| 34 |  | nnz |  |-  ( n e. NN -> n e. ZZ ) | 
						
							| 35 |  | rpexpcl |  |-  ( ( B e. RR+ /\ n e. ZZ ) -> ( B ^ n ) e. RR+ ) | 
						
							| 36 | 4 34 35 | syl2an |  |-  ( ( ph /\ n e. NN ) -> ( B ^ n ) e. RR+ ) | 
						
							| 37 | 36 | rpcnd |  |-  ( ( ph /\ n e. NN ) -> ( B ^ n ) e. CC ) | 
						
							| 38 | 33 37 | eqeltrd |  |-  ( ( ph /\ n e. NN ) -> ( ( m e. NN0 |-> ( B ^ m ) ) ` n ) e. CC ) | 
						
							| 39 | 23 | adantr |  |-  ( ( ph /\ n e. NN ) -> ( A / ( 1 - B ) ) e. CC ) | 
						
							| 40 | 37 39 | mulcomd |  |-  ( ( ph /\ n e. NN ) -> ( ( B ^ n ) x. ( A / ( 1 - B ) ) ) = ( ( A / ( 1 - B ) ) x. ( B ^ n ) ) ) | 
						
							| 41 | 29 | oveq1d |  |-  ( m = n -> ( ( B ^ m ) x. ( A / ( 1 - B ) ) ) = ( ( B ^ n ) x. ( A / ( 1 - B ) ) ) ) | 
						
							| 42 |  | eqid |  |-  ( m e. NN |-> ( ( B ^ m ) x. ( A / ( 1 - B ) ) ) ) = ( m e. NN |-> ( ( B ^ m ) x. ( A / ( 1 - B ) ) ) ) | 
						
							| 43 |  | ovex |  |-  ( ( B ^ n ) x. ( A / ( 1 - B ) ) ) e. _V | 
						
							| 44 | 41 42 43 | fvmpt |  |-  ( n e. NN -> ( ( m e. NN |-> ( ( B ^ m ) x. ( A / ( 1 - B ) ) ) ) ` n ) = ( ( B ^ n ) x. ( A / ( 1 - B ) ) ) ) | 
						
							| 45 | 44 | adantl |  |-  ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> ( ( B ^ m ) x. ( A / ( 1 - B ) ) ) ) ` n ) = ( ( B ^ n ) x. ( A / ( 1 - B ) ) ) ) | 
						
							| 46 | 33 | oveq2d |  |-  ( ( ph /\ n e. NN ) -> ( ( A / ( 1 - B ) ) x. ( ( m e. NN0 |-> ( B ^ m ) ) ` n ) ) = ( ( A / ( 1 - B ) ) x. ( B ^ n ) ) ) | 
						
							| 47 | 40 45 46 | 3eqtr4d |  |-  ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> ( ( B ^ m ) x. ( A / ( 1 - B ) ) ) ) ` n ) = ( ( A / ( 1 - B ) ) x. ( ( m e. NN0 |-> ( B ^ m ) ) ` n ) ) ) | 
						
							| 48 | 7 8 14 23 26 38 47 | climmulc2 |  |-  ( ph -> ( m e. NN |-> ( ( B ^ m ) x. ( A / ( 1 - B ) ) ) ) ~~> ( ( A / ( 1 - B ) ) x. 0 ) ) | 
						
							| 49 | 23 | mul01d |  |-  ( ph -> ( ( A / ( 1 - B ) ) x. 0 ) = 0 ) | 
						
							| 50 | 48 49 | breqtrd |  |-  ( ph -> ( m e. NN |-> ( ( B ^ m ) x. ( A / ( 1 - B ) ) ) ) ~~> 0 ) | 
						
							| 51 | 36 | rpred |  |-  ( ( ph /\ n e. NN ) -> ( B ^ n ) e. RR ) | 
						
							| 52 | 22 | adantr |  |-  ( ( ph /\ n e. NN ) -> ( A / ( 1 - B ) ) e. RR ) | 
						
							| 53 | 51 52 | remulcld |  |-  ( ( ph /\ n e. NN ) -> ( ( B ^ n ) x. ( A / ( 1 - B ) ) ) e. RR ) | 
						
							| 54 | 53 | recnd |  |-  ( ( ph /\ n e. NN ) -> ( ( B ^ n ) x. ( A / ( 1 - B ) ) ) e. CC ) | 
						
							| 55 | 7 8 26 45 54 | clim0c |  |-  ( ph -> ( ( m e. NN |-> ( ( B ^ m ) x. ( A / ( 1 - B ) ) ) ) ~~> 0 <-> A. x e. RR+ E. j e. NN A. n e. ( ZZ>= ` j ) ( abs ` ( ( B ^ n ) x. ( A / ( 1 - B ) ) ) ) < x ) ) | 
						
							| 56 | 50 55 | mpbid |  |-  ( ph -> A. x e. RR+ E. j e. NN A. n e. ( ZZ>= ` j ) ( abs ` ( ( B ^ n ) x. ( A / ( 1 - B ) ) ) ) < x ) | 
						
							| 57 |  | nnz |  |-  ( j e. NN -> j e. ZZ ) | 
						
							| 58 | 57 | adantl |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> j e. ZZ ) | 
						
							| 59 |  | uzid |  |-  ( j e. ZZ -> j e. ( ZZ>= ` j ) ) | 
						
							| 60 |  | oveq2 |  |-  ( n = j -> ( B ^ n ) = ( B ^ j ) ) | 
						
							| 61 | 60 | fvoveq1d |  |-  ( n = j -> ( abs ` ( ( B ^ n ) x. ( A / ( 1 - B ) ) ) ) = ( abs ` ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) ) ) | 
						
							| 62 | 61 | breq1d |  |-  ( n = j -> ( ( abs ` ( ( B ^ n ) x. ( A / ( 1 - B ) ) ) ) < x <-> ( abs ` ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) ) < x ) ) | 
						
							| 63 | 62 | rspcv |  |-  ( j e. ( ZZ>= ` j ) -> ( A. n e. ( ZZ>= ` j ) ( abs ` ( ( B ^ n ) x. ( A / ( 1 - B ) ) ) ) < x -> ( abs ` ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) ) < x ) ) | 
						
							| 64 | 58 59 63 | 3syl |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( A. n e. ( ZZ>= ` j ) ( abs ` ( ( B ^ n ) x. ( A / ( 1 - B ) ) ) ) < x -> ( abs ` ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) ) < x ) ) | 
						
							| 65 | 1 | adantr |  |-  ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> D e. ( Met ` X ) ) | 
						
							| 66 |  | simpl |  |-  ( ( j e. NN /\ n e. ( ZZ>= ` j ) ) -> j e. NN ) | 
						
							| 67 |  | ffvelcdm |  |-  ( ( F : NN --> X /\ j e. NN ) -> ( F ` j ) e. X ) | 
						
							| 68 | 2 66 67 | syl2an |  |-  ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( F ` j ) e. X ) | 
						
							| 69 |  | eluznn |  |-  ( ( j e. NN /\ n e. ( ZZ>= ` j ) ) -> n e. NN ) | 
						
							| 70 |  | ffvelcdm |  |-  ( ( F : NN --> X /\ n e. NN ) -> ( F ` n ) e. X ) | 
						
							| 71 | 2 69 70 | syl2an |  |-  ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( F ` n ) e. X ) | 
						
							| 72 |  | metcl |  |-  ( ( D e. ( Met ` X ) /\ ( F ` j ) e. X /\ ( F ` n ) e. X ) -> ( ( F ` j ) D ( F ` n ) ) e. RR ) | 
						
							| 73 | 65 68 71 72 | syl3anc |  |-  ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( ( F ` j ) D ( F ` n ) ) e. RR ) | 
						
							| 74 |  | eqid |  |-  ( ZZ>= ` j ) = ( ZZ>= ` j ) | 
						
							| 75 |  | nnnn0 |  |-  ( j e. NN -> j e. NN0 ) | 
						
							| 76 | 75 | ad2antrl |  |-  ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> j e. NN0 ) | 
						
							| 77 | 76 | nn0zd |  |-  ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> j e. ZZ ) | 
						
							| 78 |  | oveq2 |  |-  ( m = k -> ( B ^ m ) = ( B ^ k ) ) | 
						
							| 79 | 78 | oveq2d |  |-  ( m = k -> ( A x. ( B ^ m ) ) = ( A x. ( B ^ k ) ) ) | 
						
							| 80 |  | eqid |  |-  ( m e. ( ZZ>= ` j ) |-> ( A x. ( B ^ m ) ) ) = ( m e. ( ZZ>= ` j ) |-> ( A x. ( B ^ m ) ) ) | 
						
							| 81 |  | ovex |  |-  ( A x. ( B ^ k ) ) e. _V | 
						
							| 82 | 79 80 81 | fvmpt |  |-  ( k e. ( ZZ>= ` j ) -> ( ( m e. ( ZZ>= ` j ) |-> ( A x. ( B ^ m ) ) ) ` k ) = ( A x. ( B ^ k ) ) ) | 
						
							| 83 | 82 | adantl |  |-  ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ( ( m e. ( ZZ>= ` j ) |-> ( A x. ( B ^ m ) ) ) ` k ) = ( A x. ( B ^ k ) ) ) | 
						
							| 84 | 3 | ad2antrr |  |-  ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( ZZ>= ` j ) ) -> A e. RR ) | 
						
							| 85 | 10 | ad2antrr |  |-  ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( ZZ>= ` j ) ) -> B e. RR ) | 
						
							| 86 |  | eluznn0 |  |-  ( ( j e. NN0 /\ k e. ( ZZ>= ` j ) ) -> k e. NN0 ) | 
						
							| 87 | 76 86 | sylan |  |-  ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( ZZ>= ` j ) ) -> k e. NN0 ) | 
						
							| 88 | 85 87 | reexpcld |  |-  ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ( B ^ k ) e. RR ) | 
						
							| 89 | 84 88 | remulcld |  |-  ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ( A x. ( B ^ k ) ) e. RR ) | 
						
							| 90 | 89 | recnd |  |-  ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ( A x. ( B ^ k ) ) e. CC ) | 
						
							| 91 | 3 | recnd |  |-  ( ph -> A e. CC ) | 
						
							| 92 | 91 | adantr |  |-  ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> A e. CC ) | 
						
							| 93 | 9 | adantr |  |-  ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> B e. CC ) | 
						
							| 94 | 13 | adantr |  |-  ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( abs ` B ) < 1 ) | 
						
							| 95 |  | eqid |  |-  ( m e. ( ZZ>= ` j ) |-> ( B ^ m ) ) = ( m e. ( ZZ>= ` j ) |-> ( B ^ m ) ) | 
						
							| 96 |  | ovex |  |-  ( B ^ k ) e. _V | 
						
							| 97 | 78 95 96 | fvmpt |  |-  ( k e. ( ZZ>= ` j ) -> ( ( m e. ( ZZ>= ` j ) |-> ( B ^ m ) ) ` k ) = ( B ^ k ) ) | 
						
							| 98 | 97 | adantl |  |-  ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ( ( m e. ( ZZ>= ` j ) |-> ( B ^ m ) ) ` k ) = ( B ^ k ) ) | 
						
							| 99 | 93 94 76 98 | geolim2 |  |-  ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> seq j ( + , ( m e. ( ZZ>= ` j ) |-> ( B ^ m ) ) ) ~~> ( ( B ^ j ) / ( 1 - B ) ) ) | 
						
							| 100 | 88 | recnd |  |-  ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ( B ^ k ) e. CC ) | 
						
							| 101 | 98 100 | eqeltrd |  |-  ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ( ( m e. ( ZZ>= ` j ) |-> ( B ^ m ) ) ` k ) e. CC ) | 
						
							| 102 | 98 | oveq2d |  |-  ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ( A x. ( ( m e. ( ZZ>= ` j ) |-> ( B ^ m ) ) ` k ) ) = ( A x. ( B ^ k ) ) ) | 
						
							| 103 | 83 102 | eqtr4d |  |-  ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ( ( m e. ( ZZ>= ` j ) |-> ( A x. ( B ^ m ) ) ) ` k ) = ( A x. ( ( m e. ( ZZ>= ` j ) |-> ( B ^ m ) ) ` k ) ) ) | 
						
							| 104 | 74 77 92 99 101 103 | isermulc2 |  |-  ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> seq j ( + , ( m e. ( ZZ>= ` j ) |-> ( A x. ( B ^ m ) ) ) ) ~~> ( A x. ( ( B ^ j ) / ( 1 - B ) ) ) ) | 
						
							| 105 | 4 | adantr |  |-  ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> B e. RR+ ) | 
						
							| 106 | 105 77 | rpexpcld |  |-  ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( B ^ j ) e. RR+ ) | 
						
							| 107 | 106 | rpcnd |  |-  ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( B ^ j ) e. CC ) | 
						
							| 108 | 17 | recnd |  |-  ( ph -> ( 1 - B ) e. CC ) | 
						
							| 109 | 108 | adantr |  |-  ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( 1 - B ) e. CC ) | 
						
							| 110 | 21 | rpne0d |  |-  ( ph -> ( 1 - B ) =/= 0 ) | 
						
							| 111 | 110 | adantr |  |-  ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( 1 - B ) =/= 0 ) | 
						
							| 112 | 92 107 109 111 | div12d |  |-  ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( A x. ( ( B ^ j ) / ( 1 - B ) ) ) = ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) ) | 
						
							| 113 | 104 112 | breqtrd |  |-  ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> seq j ( + , ( m e. ( ZZ>= ` j ) |-> ( A x. ( B ^ m ) ) ) ) ~~> ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) ) | 
						
							| 114 | 74 77 83 90 113 | isumclim |  |-  ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> sum_ k e. ( ZZ>= ` j ) ( A x. ( B ^ k ) ) = ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) ) | 
						
							| 115 |  | seqex |  |-  seq j ( + , ( m e. ( ZZ>= ` j ) |-> ( A x. ( B ^ m ) ) ) ) e. _V | 
						
							| 116 |  | ovex |  |-  ( A x. ( ( B ^ j ) / ( 1 - B ) ) ) e. _V | 
						
							| 117 | 115 116 | breldm |  |-  ( seq j ( + , ( m e. ( ZZ>= ` j ) |-> ( A x. ( B ^ m ) ) ) ) ~~> ( A x. ( ( B ^ j ) / ( 1 - B ) ) ) -> seq j ( + , ( m e. ( ZZ>= ` j ) |-> ( A x. ( B ^ m ) ) ) ) e. dom ~~> ) | 
						
							| 118 | 104 117 | syl |  |-  ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> seq j ( + , ( m e. ( ZZ>= ` j ) |-> ( A x. ( B ^ m ) ) ) ) e. dom ~~> ) | 
						
							| 119 | 74 77 83 89 118 | isumrecl |  |-  ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> sum_ k e. ( ZZ>= ` j ) ( A x. ( B ^ k ) ) e. RR ) | 
						
							| 120 | 114 119 | eqeltrrd |  |-  ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) e. RR ) | 
						
							| 121 | 120 | recnd |  |-  ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) e. CC ) | 
						
							| 122 | 121 | abscld |  |-  ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( abs ` ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) ) e. RR ) | 
						
							| 123 |  | fzfid |  |-  ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( j ... ( n - 1 ) ) e. Fin ) | 
						
							| 124 |  | simpll |  |-  ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( j ... ( n - 1 ) ) ) -> ph ) | 
						
							| 125 |  | elfzuz |  |-  ( k e. ( j ... ( n - 1 ) ) -> k e. ( ZZ>= ` j ) ) | 
						
							| 126 |  | simprl |  |-  ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> j e. NN ) | 
						
							| 127 |  | eluznn |  |-  ( ( j e. NN /\ k e. ( ZZ>= ` j ) ) -> k e. NN ) | 
						
							| 128 | 126 127 | sylan |  |-  ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( ZZ>= ` j ) ) -> k e. NN ) | 
						
							| 129 | 125 128 | sylan2 |  |-  ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( j ... ( n - 1 ) ) ) -> k e. NN ) | 
						
							| 130 | 1 | adantr |  |-  ( ( ph /\ k e. NN ) -> D e. ( Met ` X ) ) | 
						
							| 131 | 2 | ffvelcdmda |  |-  ( ( ph /\ k e. NN ) -> ( F ` k ) e. X ) | 
						
							| 132 |  | peano2nn |  |-  ( k e. NN -> ( k + 1 ) e. NN ) | 
						
							| 133 |  | ffvelcdm |  |-  ( ( F : NN --> X /\ ( k + 1 ) e. NN ) -> ( F ` ( k + 1 ) ) e. X ) | 
						
							| 134 | 2 132 133 | syl2an |  |-  ( ( ph /\ k e. NN ) -> ( F ` ( k + 1 ) ) e. X ) | 
						
							| 135 |  | metcl |  |-  ( ( D e. ( Met ` X ) /\ ( F ` k ) e. X /\ ( F ` ( k + 1 ) ) e. X ) -> ( ( F ` k ) D ( F ` ( k + 1 ) ) ) e. RR ) | 
						
							| 136 | 130 131 134 135 | syl3anc |  |-  ( ( ph /\ k e. NN ) -> ( ( F ` k ) D ( F ` ( k + 1 ) ) ) e. RR ) | 
						
							| 137 | 124 129 136 | syl2anc |  |-  ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( j ... ( n - 1 ) ) ) -> ( ( F ` k ) D ( F ` ( k + 1 ) ) ) e. RR ) | 
						
							| 138 | 123 137 | fsumrecl |  |-  ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> sum_ k e. ( j ... ( n - 1 ) ) ( ( F ` k ) D ( F ` ( k + 1 ) ) ) e. RR ) | 
						
							| 139 |  | simprr |  |-  ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> n e. ( ZZ>= ` j ) ) | 
						
							| 140 |  | elfzuz |  |-  ( k e. ( j ... n ) -> k e. ( ZZ>= ` j ) ) | 
						
							| 141 |  | simpll |  |-  ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ph ) | 
						
							| 142 | 141 128 131 | syl2anc |  |-  ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) e. X ) | 
						
							| 143 | 140 142 | sylan2 |  |-  ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( j ... n ) ) -> ( F ` k ) e. X ) | 
						
							| 144 | 65 139 143 | mettrifi |  |-  ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( ( F ` j ) D ( F ` n ) ) <_ sum_ k e. ( j ... ( n - 1 ) ) ( ( F ` k ) D ( F ` ( k + 1 ) ) ) ) | 
						
							| 145 | 125 89 | sylan2 |  |-  ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( j ... ( n - 1 ) ) ) -> ( A x. ( B ^ k ) ) e. RR ) | 
						
							| 146 | 123 145 | fsumrecl |  |-  ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> sum_ k e. ( j ... ( n - 1 ) ) ( A x. ( B ^ k ) ) e. RR ) | 
						
							| 147 | 124 129 6 | syl2anc |  |-  ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( j ... ( n - 1 ) ) ) -> ( ( F ` k ) D ( F ` ( k + 1 ) ) ) <_ ( A x. ( B ^ k ) ) ) | 
						
							| 148 | 123 137 145 147 | fsumle |  |-  ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> sum_ k e. ( j ... ( n - 1 ) ) ( ( F ` k ) D ( F ` ( k + 1 ) ) ) <_ sum_ k e. ( j ... ( n - 1 ) ) ( A x. ( B ^ k ) ) ) | 
						
							| 149 |  | fzssuz |  |-  ( j ... ( n - 1 ) ) C_ ( ZZ>= ` j ) | 
						
							| 150 | 149 | a1i |  |-  ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( j ... ( n - 1 ) ) C_ ( ZZ>= ` j ) ) | 
						
							| 151 |  | 0red |  |-  ( ( ph /\ k e. NN ) -> 0 e. RR ) | 
						
							| 152 |  | nnz |  |-  ( k e. NN -> k e. ZZ ) | 
						
							| 153 |  | rpexpcl |  |-  ( ( B e. RR+ /\ k e. ZZ ) -> ( B ^ k ) e. RR+ ) | 
						
							| 154 | 4 152 153 | syl2an |  |-  ( ( ph /\ k e. NN ) -> ( B ^ k ) e. RR+ ) | 
						
							| 155 | 136 154 | rerpdivcld |  |-  ( ( ph /\ k e. NN ) -> ( ( ( F ` k ) D ( F ` ( k + 1 ) ) ) / ( B ^ k ) ) e. RR ) | 
						
							| 156 | 3 | adantr |  |-  ( ( ph /\ k e. NN ) -> A e. RR ) | 
						
							| 157 |  | metge0 |  |-  ( ( D e. ( Met ` X ) /\ ( F ` k ) e. X /\ ( F ` ( k + 1 ) ) e. X ) -> 0 <_ ( ( F ` k ) D ( F ` ( k + 1 ) ) ) ) | 
						
							| 158 | 130 131 134 157 | syl3anc |  |-  ( ( ph /\ k e. NN ) -> 0 <_ ( ( F ` k ) D ( F ` ( k + 1 ) ) ) ) | 
						
							| 159 | 136 154 158 | divge0d |  |-  ( ( ph /\ k e. NN ) -> 0 <_ ( ( ( F ` k ) D ( F ` ( k + 1 ) ) ) / ( B ^ k ) ) ) | 
						
							| 160 | 136 156 154 | ledivmul2d |  |-  ( ( ph /\ k e. NN ) -> ( ( ( ( F ` k ) D ( F ` ( k + 1 ) ) ) / ( B ^ k ) ) <_ A <-> ( ( F ` k ) D ( F ` ( k + 1 ) ) ) <_ ( A x. ( B ^ k ) ) ) ) | 
						
							| 161 | 6 160 | mpbird |  |-  ( ( ph /\ k e. NN ) -> ( ( ( F ` k ) D ( F ` ( k + 1 ) ) ) / ( B ^ k ) ) <_ A ) | 
						
							| 162 | 151 155 156 159 161 | letrd |  |-  ( ( ph /\ k e. NN ) -> 0 <_ A ) | 
						
							| 163 | 141 128 162 | syl2anc |  |-  ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( ZZ>= ` j ) ) -> 0 <_ A ) | 
						
							| 164 | 141 128 154 | syl2anc |  |-  ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ( B ^ k ) e. RR+ ) | 
						
							| 165 | 164 | rpge0d |  |-  ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( ZZ>= ` j ) ) -> 0 <_ ( B ^ k ) ) | 
						
							| 166 | 84 88 163 165 | mulge0d |  |-  ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( ZZ>= ` j ) ) -> 0 <_ ( A x. ( B ^ k ) ) ) | 
						
							| 167 | 74 77 123 150 83 89 166 118 | isumless |  |-  ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> sum_ k e. ( j ... ( n - 1 ) ) ( A x. ( B ^ k ) ) <_ sum_ k e. ( ZZ>= ` j ) ( A x. ( B ^ k ) ) ) | 
						
							| 168 | 138 146 119 148 167 | letrd |  |-  ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> sum_ k e. ( j ... ( n - 1 ) ) ( ( F ` k ) D ( F ` ( k + 1 ) ) ) <_ sum_ k e. ( ZZ>= ` j ) ( A x. ( B ^ k ) ) ) | 
						
							| 169 | 73 138 119 144 168 | letrd |  |-  ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( ( F ` j ) D ( F ` n ) ) <_ sum_ k e. ( ZZ>= ` j ) ( A x. ( B ^ k ) ) ) | 
						
							| 170 | 169 114 | breqtrd |  |-  ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( ( F ` j ) D ( F ` n ) ) <_ ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) ) | 
						
							| 171 | 120 | leabsd |  |-  ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) <_ ( abs ` ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) ) ) | 
						
							| 172 | 73 120 122 170 171 | letrd |  |-  ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( ( F ` j ) D ( F ` n ) ) <_ ( abs ` ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) ) ) | 
						
							| 173 | 172 | adantlr |  |-  ( ( ( ph /\ x e. RR+ ) /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( ( F ` j ) D ( F ` n ) ) <_ ( abs ` ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) ) ) | 
						
							| 174 | 73 | adantlr |  |-  ( ( ( ph /\ x e. RR+ ) /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( ( F ` j ) D ( F ` n ) ) e. RR ) | 
						
							| 175 | 122 | adantlr |  |-  ( ( ( ph /\ x e. RR+ ) /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( abs ` ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) ) e. RR ) | 
						
							| 176 |  | rpre |  |-  ( x e. RR+ -> x e. RR ) | 
						
							| 177 | 176 | ad2antlr |  |-  ( ( ( ph /\ x e. RR+ ) /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> x e. RR ) | 
						
							| 178 |  | lelttr |  |-  ( ( ( ( F ` j ) D ( F ` n ) ) e. RR /\ ( abs ` ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) ) e. RR /\ x e. RR ) -> ( ( ( ( F ` j ) D ( F ` n ) ) <_ ( abs ` ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) ) /\ ( abs ` ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) ) < x ) -> ( ( F ` j ) D ( F ` n ) ) < x ) ) | 
						
							| 179 | 174 175 177 178 | syl3anc |  |-  ( ( ( ph /\ x e. RR+ ) /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( ( ( ( F ` j ) D ( F ` n ) ) <_ ( abs ` ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) ) /\ ( abs ` ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) ) < x ) -> ( ( F ` j ) D ( F ` n ) ) < x ) ) | 
						
							| 180 | 173 179 | mpand |  |-  ( ( ( ph /\ x e. RR+ ) /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( ( abs ` ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) ) < x -> ( ( F ` j ) D ( F ` n ) ) < x ) ) | 
						
							| 181 | 180 | anassrs |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) /\ n e. ( ZZ>= ` j ) ) -> ( ( abs ` ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) ) < x -> ( ( F ` j ) D ( F ` n ) ) < x ) ) | 
						
							| 182 | 181 | ralrimdva |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( ( abs ` ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) ) < x -> A. n e. ( ZZ>= ` j ) ( ( F ` j ) D ( F ` n ) ) < x ) ) | 
						
							| 183 | 64 182 | syld |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( A. n e. ( ZZ>= ` j ) ( abs ` ( ( B ^ n ) x. ( A / ( 1 - B ) ) ) ) < x -> A. n e. ( ZZ>= ` j ) ( ( F ` j ) D ( F ` n ) ) < x ) ) | 
						
							| 184 | 183 | reximdva |  |-  ( ( ph /\ x e. RR+ ) -> ( E. j e. NN A. n e. ( ZZ>= ` j ) ( abs ` ( ( B ^ n ) x. ( A / ( 1 - B ) ) ) ) < x -> E. j e. NN A. n e. ( ZZ>= ` j ) ( ( F ` j ) D ( F ` n ) ) < x ) ) | 
						
							| 185 | 184 | ralimdva |  |-  ( ph -> ( A. x e. RR+ E. j e. NN A. n e. ( ZZ>= ` j ) ( abs ` ( ( B ^ n ) x. ( A / ( 1 - B ) ) ) ) < x -> A. x e. RR+ E. j e. NN A. n e. ( ZZ>= ` j ) ( ( F ` j ) D ( F ` n ) ) < x ) ) | 
						
							| 186 | 56 185 | mpd |  |-  ( ph -> A. x e. RR+ E. j e. NN A. n e. ( ZZ>= ` j ) ( ( F ` j ) D ( F ` n ) ) < x ) | 
						
							| 187 |  | metxmet |  |-  ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) | 
						
							| 188 | 1 187 | syl |  |-  ( ph -> D e. ( *Met ` X ) ) | 
						
							| 189 |  | eqidd |  |-  ( ( ph /\ n e. NN ) -> ( F ` n ) = ( F ` n ) ) | 
						
							| 190 |  | eqidd |  |-  ( ( ph /\ j e. NN ) -> ( F ` j ) = ( F ` j ) ) | 
						
							| 191 | 7 188 8 189 190 2 | iscauf |  |-  ( ph -> ( F e. ( Cau ` D ) <-> A. x e. RR+ E. j e. NN A. n e. ( ZZ>= ` j ) ( ( F ` j ) D ( F ` n ) ) < x ) ) | 
						
							| 192 | 186 191 | mpbird |  |-  ( ph -> F e. ( Cau ` D ) ) |