Metamath Proof Explorer


Theorem bnj1326

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1326.1 B=d|dAxdpredxARd
bnj1326.2 Y=xfpredxAR
bnj1326.3 C=f|dBfFndxdfx=GY
bnj1326.4 D=domgdomh
Assertion bnj1326 RFrSeAgChCgD=hD

Proof

Step Hyp Ref Expression
1 bnj1326.1 B=d|dAxdpredxARd
2 bnj1326.2 Y=xfpredxAR
3 bnj1326.3 C=f|dBfFndxdfx=GY
4 bnj1326.4 D=domgdomh
5 eleq1w q=hqChC
6 5 3anbi3d q=hRFrSeAgCqCRFrSeAgChC
7 dmeq q=hdomq=domh
8 7 ineq2d q=hdomgdomq=domgdomh
9 8 reseq2d q=hgdomgdomq=gdomgdomh
10 4 reseq2i gD=gdomgdomh
11 9 10 eqtr4di q=hgdomgdomq=gD
12 8 reseq2d q=hqdomgdomq=qdomgdomh
13 reseq1 q=hqdomgdomh=hdomgdomh
14 12 13 eqtrd q=hqdomgdomq=hdomgdomh
15 4 reseq2i hD=hdomgdomh
16 14 15 eqtr4di q=hqdomgdomq=hD
17 11 16 eqeq12d q=hgdomgdomq=qdomgdomqgD=hD
18 6 17 imbi12d q=hRFrSeAgCqCgdomgdomq=qdomgdomqRFrSeAgChCgD=hD
19 eleq1w p=gpCgC
20 19 3anbi2d p=gRFrSeApCqCRFrSeAgCqC
21 dmeq p=gdomp=domg
22 21 ineq1d p=gdompdomq=domgdomq
23 22 reseq2d p=gpdompdomq=pdomgdomq
24 reseq1 p=gpdomgdomq=gdomgdomq
25 23 24 eqtrd p=gpdompdomq=gdomgdomq
26 22 reseq2d p=gqdompdomq=qdomgdomq
27 25 26 eqeq12d p=gpdompdomq=qdompdomqgdomgdomq=qdomgdomq
28 20 27 imbi12d p=gRFrSeApCqCpdompdomq=qdompdomqRFrSeAgCqCgdomgdomq=qdomgdomq
29 eqid dompdomq=dompdomq
30 1 2 3 29 bnj1311 RFrSeApCqCpdompdomq=qdompdomq
31 28 30 chvarvv RFrSeAgCqCgdomgdomq=qdomgdomq
32 18 31 chvarvv RFrSeAgChCgD=hD