Metamath Proof Explorer


Theorem bnj1421

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1421.1 B=d|dAxdpredxARd
bnj1421.2 Y=xfpredxAR
bnj1421.3 C=f|dBfFndxdfx=GY
bnj1421.4 τfCdomf=xtrClxAR
bnj1421.5 D=xA|¬fτ
bnj1421.6 ψRFrSeAD
bnj1421.7 χψxDyD¬yRx
bnj1421.8 No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
bnj1421.9 No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
bnj1421.10 P=H
bnj1421.11 Z=xPpredxAR
bnj1421.12 Q=PxGZ
bnj1421.13 χFunP
bnj1421.14 χdomQ=xtrClxAR
bnj1421.15 χdomP=trClxAR
Assertion bnj1421 χFunQ

Proof

Step Hyp Ref Expression
1 bnj1421.1 B=d|dAxdpredxARd
2 bnj1421.2 Y=xfpredxAR
3 bnj1421.3 C=f|dBfFndxdfx=GY
4 bnj1421.4 τfCdomf=xtrClxAR
5 bnj1421.5 D=xA|¬fτ
6 bnj1421.6 ψRFrSeAD
7 bnj1421.7 χψxDyD¬yRx
8 bnj1421.8 Could not format ( ta' <-> [. y / x ]. ta ) : No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
9 bnj1421.9 Could not format H = { f | E. y e. _pred ( x , A , R ) ta' } : No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
10 bnj1421.10 P=H
11 bnj1421.11 Z=xPpredxAR
12 bnj1421.12 Q=PxGZ
13 bnj1421.13 χFunP
14 bnj1421.14 χdomQ=xtrClxAR
15 bnj1421.15 χdomP=trClxAR
16 vex xV
17 fvex GZV
18 16 17 funsn FunxGZ
19 13 18 jctir χFunPFunxGZ
20 17 dmsnop domxGZ=x
21 20 a1i χdomxGZ=x
22 15 21 ineq12d χdomPdomxGZ=trClxARx
23 6 simplbi ψRFrSeA
24 7 23 bnj835 χRFrSeA
25 biid RFrSeARFrSeA
26 biid ¬xtrClxAR¬xtrClxAR
27 biid zAzRx[˙z/x]˙¬xtrClxARzAzRx[˙z/x]˙¬xtrClxAR
28 biid RFrSeAxAzAzRx[˙z/x]˙¬xtrClxARRFrSeAxAzAzRx[˙z/x]˙¬xtrClxAR
29 eqid predxARzpredxARtrClzAR=predxARzpredxARtrClzAR
30 25 26 27 28 29 bnj1417 RFrSeAxA¬xtrClxAR
31 disjsn trClxARx=¬xtrClxAR
32 31 ralbii xAtrClxARx=xA¬xtrClxAR
33 30 32 sylibr RFrSeAxAtrClxARx=
34 24 33 syl χxAtrClxARx=
35 5 7 bnj1212 χxA
36 34 35 bnj1294 χtrClxARx=
37 22 36 eqtrd χdomPdomxGZ=
38 funun FunPFunxGZdomPdomxGZ=FunPxGZ
39 19 37 38 syl2anc χFunPxGZ
40 12 funeqi FunQFunPxGZ
41 39 40 sylibr χFunQ