Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj1421.1 | |
|
bnj1421.2 | |
||
bnj1421.3 | |
||
bnj1421.4 | |
||
bnj1421.5 | |
||
bnj1421.6 | |
||
bnj1421.7 | |
||
bnj1421.8 | No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |- | ||
bnj1421.9 | No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |- | ||
bnj1421.10 | |
||
bnj1421.11 | |
||
bnj1421.12 | |
||
bnj1421.13 | |
||
bnj1421.14 | |
||
bnj1421.15 | |
||
Assertion | bnj1421 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1421.1 | |
|
2 | bnj1421.2 | |
|
3 | bnj1421.3 | |
|
4 | bnj1421.4 | |
|
5 | bnj1421.5 | |
|
6 | bnj1421.6 | |
|
7 | bnj1421.7 | |
|
8 | bnj1421.8 | Could not format ( ta' <-> [. y / x ]. ta ) : No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |- | |
9 | bnj1421.9 | Could not format H = { f | E. y e. _pred ( x , A , R ) ta' } : No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |- | |
10 | bnj1421.10 | |
|
11 | bnj1421.11 | |
|
12 | bnj1421.12 | |
|
13 | bnj1421.13 | |
|
14 | bnj1421.14 | |
|
15 | bnj1421.15 | |
|
16 | vex | |
|
17 | fvex | |
|
18 | 16 17 | funsn | |
19 | 13 18 | jctir | |
20 | 17 | dmsnop | |
21 | 20 | a1i | |
22 | 15 21 | ineq12d | |
23 | 6 | simplbi | |
24 | 7 23 | bnj835 | |
25 | biid | |
|
26 | biid | |
|
27 | biid | |
|
28 | biid | |
|
29 | eqid | |
|
30 | 25 26 27 28 29 | bnj1417 | |
31 | disjsn | |
|
32 | 31 | ralbii | |
33 | 30 32 | sylibr | |
34 | 24 33 | syl | |
35 | 5 7 | bnj1212 | |
36 | 34 35 | bnj1294 | |
37 | 22 36 | eqtrd | |
38 | funun | |
|
39 | 19 37 38 | syl2anc | |
40 | 12 | funeqi | |
41 | 39 40 | sylibr | |