Metamath Proof Explorer


Theorem bnj865

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj865.1 φf=predXAR
bnj865.2 ψiωsucinfsuci=yfipredyAR
bnj865.3 D=ω
bnj865.5 χRFrSeAXAnD
bnj865.6 θfFnnφψ
Assertion bnj865 wnχfwθ

Proof

Step Hyp Ref Expression
1 bnj865.1 φf=predXAR
2 bnj865.2 ψiωsucinfsuci=yfipredyAR
3 bnj865.3 D=ω
4 bnj865.5 χRFrSeAXAnD
5 bnj865.6 θfFnnφψ
6 1 2 3 bnj852 RFrSeAXAnD∃!ffFnnφψ
7 omex ωV
8 difexg ωVωV
9 7 8 ax-mp ωV
10 3 9 eqeltri DV
11 raleq z=Dnz∃!ffFnnφψnD∃!ffFnnφψ
12 raleq z=DnzfwfFnnφψnDfwfFnnφψ
13 12 exbidv z=DwnzfwfFnnφψwnDfwfFnnφψ
14 11 13 imbi12d z=Dnz∃!ffFnnφψwnzfwfFnnφψnD∃!ffFnnφψwnDfwfFnnφψ
15 zfrep6 nz∃!ffFnnφψwnzfwfFnnφψ
16 10 14 15 vtocl nD∃!ffFnnφψwnDfwfFnnφψ
17 6 16 syl RFrSeAXAwnDfwfFnnφψ
18 19.37v wRFrSeAXAnDfwfFnnφψRFrSeAXAwnDfwfFnnφψ
19 17 18 mpbir wRFrSeAXAnDfwfFnnφψ
20 df-ral nDfwfFnnφψnnDfwfFnnφψ
21 20 imbi2i RFrSeAXAnDfwfFnnφψRFrSeAXAnnDfwfFnnφψ
22 19.21v nRFrSeAXAnDfwfFnnφψRFrSeAXAnnDfwfFnnφψ
23 21 22 bitr4i RFrSeAXAnDfwfFnnφψnRFrSeAXAnDfwfFnnφψ
24 23 exbii wRFrSeAXAnDfwfFnnφψwnRFrSeAXAnDfwfFnnφψ
25 impexp RFrSeAXAnDfwfFnnφψRFrSeAXAnDfwfFnnφψ
26 df-3an RFrSeAXAnDRFrSeAXAnD
27 26 bicomi RFrSeAXAnDRFrSeAXAnD
28 27 imbi1i RFrSeAXAnDfwfFnnφψRFrSeAXAnDfwfFnnφψ
29 25 28 bitr3i RFrSeAXAnDfwfFnnφψRFrSeAXAnDfwfFnnφψ
30 29 albii nRFrSeAXAnDfwfFnnφψnRFrSeAXAnDfwfFnnφψ
31 30 exbii wnRFrSeAXAnDfwfFnnφψwnRFrSeAXAnDfwfFnnφψ
32 24 31 bitri wRFrSeAXAnDfwfFnnφψwnRFrSeAXAnDfwfFnnφψ
33 19 32 mpbi wnRFrSeAXAnDfwfFnnφψ
34 4 bicomi RFrSeAXAnDχ
35 34 imbi1i RFrSeAXAnDfwfFnnφψχfwfFnnφψ
36 35 albii nRFrSeAXAnDfwfFnnφψnχfwfFnnφψ
37 36 exbii wnRFrSeAXAnDfwfFnnφψwnχfwfFnnφψ
38 33 37 mpbi wnχfwfFnnφψ
39 5 rexbii fwθfwfFnnφψ
40 39 imbi2i χfwθχfwfFnnφψ
41 40 albii nχfwθnχfwfFnnφψ
42 41 exbii wnχfwθwnχfwfFnnφψ
43 38 42 mpbir wnχfwθ