Metamath Proof Explorer


Theorem zfrep6

Description: A version of the Axiom of Replacement. Normally ph would have free variables x and y . Axiom 6 of Kunen p. 12. The Separation Scheme ax-sep cannot be derived from this version and must be stated as a separate axiom in an axiom system (such as Kunen's) that uses this version in place of our ax-rep . (Contributed by NM, 10-Oct-2003)

Ref Expression
Assertion zfrep6 xz∃!yφwxzywφ

Proof

Step Hyp Ref Expression
1 19.42v yxzφxzyφ
2 1 abbii x|yxzφ=x|xzyφ
3 dmopab domxy|xzφ=x|yxzφ
4 df-rab xz|yφ=x|xzyφ
5 2 3 4 3eqtr4i domxy|xzφ=xz|yφ
6 euex ∃!yφyφ
7 6 ralimi xz∃!yφxzyφ
8 rabid2 z=xz|yφxzyφ
9 7 8 sylibr xz∃!yφz=xz|yφ
10 5 9 eqtr4id xz∃!yφdomxy|xzφ=z
11 vex zV
12 10 11 eqeltrdi xz∃!yφdomxy|xzφV
13 eumo ∃!yφ*yφ
14 13 imim2i xz∃!yφxz*yφ
15 moanimv *yxzφxz*yφ
16 14 15 sylibr xz∃!yφ*yxzφ
17 16 alimi xxz∃!yφx*yxzφ
18 df-ral xz∃!yφxxz∃!yφ
19 funopab Funxy|xzφx*yxzφ
20 17 18 19 3imtr4i xz∃!yφFunxy|xzφ
21 funrnex domxy|xzφVFunxy|xzφranxy|xzφV
22 12 20 21 sylc xz∃!yφranxy|xzφV
23 nfra1 xxz∃!yφ
24 10 eleq2d xz∃!yφxdomxy|xzφxz
25 opabidw xyxy|xzφxzφ
26 vex xV
27 vex yV
28 26 27 opelrn xyxy|xzφyranxy|xzφ
29 25 28 sylbir xzφyranxy|xzφ
30 29 ex xzφyranxy|xzφ
31 30 impac xzφyranxy|xzφφ
32 31 eximi yxzφyyranxy|xzφφ
33 3 eqabri xdomxy|xzφyxzφ
34 df-rex yranxy|xzφφyyranxy|xzφφ
35 32 33 34 3imtr4i xdomxy|xzφyranxy|xzφφ
36 24 35 syl6bir xz∃!yφxzyranxy|xzφφ
37 23 36 ralrimi xz∃!yφxzyranxy|xzφφ
38 nfopab1 _xxy|xzφ
39 38 nfrn _xranxy|xzφ
40 39 nfeq2 xw=ranxy|xzφ
41 nfcv _yw
42 nfopab2 _yxy|xzφ
43 42 nfrn _yranxy|xzφ
44 41 43 rexeqf w=ranxy|xzφywφyranxy|xzφφ
45 40 44 ralbid w=ranxy|xzφxzywφxzyranxy|xzφφ
46 22 37 45 spcedv xz∃!yφwxzywφ