Metamath Proof Explorer


Theorem bnj964

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj964.2 ψiωsucinfsuci=yfipredyAR
bnj964.3 χnDfFnnφψ
bnj964.5 No typesetting found for |- ( ps' <-> [. p / n ]. ps ) with typecode |-
bnj964.8 No typesetting found for |- ( ps" <-> [. G / f ]. ps' ) with typecode |-
bnj964.12 C=yfmpredyAR
bnj964.13 G=fnC
bnj964.96 RFrSeAXAχn=sucmp=sucniωsucipsucinGsuci=yGipredyAR
bnj964.165 RFrSeAXAχn=sucmp=sucniωsucipn=suciGsuci=yGipredyAR
Assertion bnj964 Could not format assertion : No typesetting found for |- ( ( ( R _FrSe A /\ X e. A ) /\ ( ch /\ n = suc m /\ p = suc n ) ) -> ps" ) with typecode |-

Proof

Step Hyp Ref Expression
1 bnj964.2 ψiωsucinfsuci=yfipredyAR
2 bnj964.3 χnDfFnnφψ
3 bnj964.5 Could not format ( ps' <-> [. p / n ]. ps ) : No typesetting found for |- ( ps' <-> [. p / n ]. ps ) with typecode |-
4 bnj964.8 Could not format ( ps" <-> [. G / f ]. ps' ) : No typesetting found for |- ( ps" <-> [. G / f ]. ps' ) with typecode |-
5 bnj964.12 C=yfmpredyAR
6 bnj964.13 G=fnC
7 bnj964.96 RFrSeAXAχn=sucmp=sucniωsucipsucinGsuci=yGipredyAR
8 bnj964.165 RFrSeAXAχn=sucmp=sucniωsucipn=suciGsuci=yGipredyAR
9 nfv iRFrSeAXA
10 1 bnj1095 ψiψ
11 10 2 bnj1096 χiχ
12 11 nf5i iχ
13 nfv in=sucm
14 nfv ip=sucn
15 12 13 14 nf3an iχn=sucmp=sucn
16 9 15 nfan iRFrSeAXAχn=sucmp=sucn
17 bnj255 RFrSeAXAχn=sucmp=sucniωsucipRFrSeAXAχn=sucmp=sucniωsucip
18 bnj645 RFrSeAXAχn=sucmp=sucniωsucipsucip
19 simp3 χn=sucmp=sucnp=sucn
20 19 bnj706 RFrSeAXAχn=sucmp=sucniωsucipp=sucn
21 eleq2 p=sucnsucipsucisucn
22 21 biimpac sucipp=sucnsucisucn
23 elsuci sucisucnsucinsuci=n
24 eqcom suci=nn=suci
25 24 orbi2i sucinsuci=nsucinn=suci
26 23 25 sylib sucisucnsucinn=suci
27 22 26 syl sucipp=sucnsucinn=suci
28 18 20 27 syl2anc RFrSeAXAχn=sucmp=sucniωsucipsucinn=suci
29 df-3an iωsucipsuciniωsucipsucin
30 29 3anbi3i RFrSeAXAχn=sucmp=sucniωsucipsucinRFrSeAXAχn=sucmp=sucniωsucipsucin
31 bnj255 RFrSeAXAχn=sucmp=sucniωsucipsucinRFrSeAXAχn=sucmp=sucniωsucipsucin
32 30 31 bitr4i RFrSeAXAχn=sucmp=sucniωsucipsucinRFrSeAXAχn=sucmp=sucniωsucipsucin
33 bnj345 RFrSeAXAχn=sucmp=sucniωsucipsucinsucinRFrSeAXAχn=sucmp=sucniωsucip
34 bnj252 sucinRFrSeAXAχn=sucmp=sucniωsucipsucinRFrSeAXAχn=sucmp=sucniωsucip
35 32 33 34 3bitri RFrSeAXAχn=sucmp=sucniωsucipsucinsucinRFrSeAXAχn=sucmp=sucniωsucip
36 17 anbi2i sucinRFrSeAXAχn=sucmp=sucniωsucipsucinRFrSeAXAχn=sucmp=sucniωsucip
37 35 36 bitr4i RFrSeAXAχn=sucmp=sucniωsucipsucinsucinRFrSeAXAχn=sucmp=sucniωsucip
38 37 7 sylbir sucinRFrSeAXAχn=sucmp=sucniωsucipGsuci=yGipredyAR
39 38 ex sucinRFrSeAXAχn=sucmp=sucniωsucipGsuci=yGipredyAR
40 df-3an iωsucipn=suciiωsucipn=suci
41 40 3anbi3i RFrSeAXAχn=sucmp=sucniωsucipn=suciRFrSeAXAχn=sucmp=sucniωsucipn=suci
42 bnj255 RFrSeAXAχn=sucmp=sucniωsucipn=suciRFrSeAXAχn=sucmp=sucniωsucipn=suci
43 41 42 bitr4i RFrSeAXAχn=sucmp=sucniωsucipn=suciRFrSeAXAχn=sucmp=sucniωsucipn=suci
44 bnj345 RFrSeAXAχn=sucmp=sucniωsucipn=sucin=suciRFrSeAXAχn=sucmp=sucniωsucip
45 bnj252 n=suciRFrSeAXAχn=sucmp=sucniωsucipn=suciRFrSeAXAχn=sucmp=sucniωsucip
46 43 44 45 3bitri RFrSeAXAχn=sucmp=sucniωsucipn=sucin=suciRFrSeAXAχn=sucmp=sucniωsucip
47 17 anbi2i n=suciRFrSeAXAχn=sucmp=sucniωsucipn=suciRFrSeAXAχn=sucmp=sucniωsucip
48 46 47 bitr4i RFrSeAXAχn=sucmp=sucniωsucipn=sucin=suciRFrSeAXAχn=sucmp=sucniωsucip
49 48 8 sylbir n=suciRFrSeAXAχn=sucmp=sucniωsucipGsuci=yGipredyAR
50 49 ex n=suciRFrSeAXAχn=sucmp=sucniωsucipGsuci=yGipredyAR
51 39 50 jaoi sucinn=suciRFrSeAXAχn=sucmp=sucniωsucipGsuci=yGipredyAR
52 28 51 mpcom RFrSeAXAχn=sucmp=sucniωsucipGsuci=yGipredyAR
53 17 52 sylbir RFrSeAXAχn=sucmp=sucniωsucipGsuci=yGipredyAR
54 53 3expia RFrSeAXAχn=sucmp=sucniωsucipGsuci=yGipredyAR
55 16 54 alrimi RFrSeAXAχn=sucmp=sucniiωsucipGsuci=yGipredyAR
56 vex pV
57 1 3 56 bnj539 Could not format ( ps' <-> A. i e. _om ( suc i e. p -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) : No typesetting found for |- ( ps' <-> A. i e. _om ( suc i e. p -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) with typecode |-
58 57 4 5 6 bnj965 Could not format ( ps" <-> A. i e. _om ( suc i e. p -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) ) : No typesetting found for |- ( ps" <-> A. i e. _om ( suc i e. p -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) ) with typecode |-
59 58 bnj115 Could not format ( ps" <-> A. i ( ( i e. _om /\ suc i e. p ) -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) ) : No typesetting found for |- ( ps" <-> A. i ( ( i e. _om /\ suc i e. p ) -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) ) with typecode |-
60 55 59 sylibr Could not format ( ( ( R _FrSe A /\ X e. A ) /\ ( ch /\ n = suc m /\ p = suc n ) ) -> ps" ) : No typesetting found for |- ( ( ( R _FrSe A /\ X e. A ) /\ ( ch /\ n = suc m /\ p = suc n ) ) -> ps" ) with typecode |-