Metamath Proof Explorer


Theorem bnj966

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj966.3 χnDfFnnφψ
bnj966.10 D=ω
bnj966.12 C=yfmpredyAR
bnj966.13 G=fnC
bnj966.44 RFrSeAXAχn=sucmp=sucnCV
bnj966.53 RFrSeAXAχn=sucmp=sucnGFnp
Assertion bnj966 RFrSeAXAχn=sucmp=sucniωsucipn=suciGsuci=yGipredyAR

Proof

Step Hyp Ref Expression
1 bnj966.3 χnDfFnnφψ
2 bnj966.10 D=ω
3 bnj966.12 C=yfmpredyAR
4 bnj966.13 G=fnC
5 bnj966.44 RFrSeAXAχn=sucmp=sucnCV
6 bnj966.53 RFrSeAXAχn=sucmp=sucnGFnp
7 6 fnfund RFrSeAXAχn=sucmp=sucnFunG
8 7 3adant3 RFrSeAXAχn=sucmp=sucniωsucipn=suciFunG
9 opex nCV
10 9 snid nCnC
11 elun2 nCnCnCfnC
12 10 11 ax-mp nCfnC
13 12 4 eleqtrri nCG
14 funopfv FunGnCGGn=C
15 8 13 14 mpisyl RFrSeAXAχn=sucmp=sucniωsucipn=suciGn=C
16 simp22 RFrSeAXAχn=sucmp=sucniωsucipn=sucin=sucm
17 simp33 RFrSeAXAχn=sucmp=sucniωsucipn=sucin=suci
18 bnj551 n=sucmn=sucim=i
19 16 17 18 syl2anc RFrSeAXAχn=sucmp=sucniωsucipn=sucim=i
20 suceq m=isucm=suci
21 20 eqeq2d m=in=sucmn=suci
22 21 biimpac n=sucmm=in=suci
23 22 fveq2d n=sucmm=iGn=Gsuci
24 fveq2 m=ifm=fi
25 24 bnj1113 m=iyfmpredyAR=yfipredyAR
26 3 25 eqtrid m=iC=yfipredyAR
27 26 adantl n=sucmm=iC=yfipredyAR
28 23 27 eqeq12d n=sucmm=iGn=CGsuci=yfipredyAR
29 16 19 28 syl2anc RFrSeAXAχn=sucmp=sucniωsucipn=suciGn=CGsuci=yfipredyAR
30 15 29 mpbid RFrSeAXAχn=sucmp=sucniωsucipn=suciGsuci=yfipredyAR
31 5 3adant3 RFrSeAXAχn=sucmp=sucniωsucipn=suciCV
32 1 bnj1235 χfFnn
33 32 3ad2ant1 χn=sucmp=sucnfFnn
34 33 3ad2ant2 RFrSeAXAχn=sucmp=sucniωsucipn=sucifFnn
35 simp23 RFrSeAXAχn=sucmp=sucniωsucipn=sucip=sucn
36 31 34 35 17 bnj951 RFrSeAXAχn=sucmp=sucniωsucipn=suciCVfFnnp=sucnn=suci
37 2 bnj923 nDnω
38 1 37 bnj769 χnω
39 38 3ad2ant1 χn=sucmp=sucnnω
40 simp3 iωsucipn=sucin=suci
41 39 40 bnj240 RFrSeAXAχn=sucmp=sucniωsucipn=sucinωn=suci
42 vex iV
43 42 bnj216 n=suciin
44 43 adantl nωn=suciin
45 41 44 syl RFrSeAXAχn=sucmp=sucniωsucipn=suciin
46 bnj658 CVfFnnp=sucnn=suciCVfFnnp=sucn
47 46 anim1i CVfFnnp=sucnn=suciinCVfFnnp=sucnin
48 df-bnj17 CVfFnnp=sucninCVfFnnp=sucnin
49 47 48 sylibr CVfFnnp=sucnn=suciinCVfFnnp=sucnin
50 4 bnj945 CVfFnnp=sucninGi=fi
51 49 50 syl CVfFnnp=sucnn=suciinGi=fi
52 36 45 51 syl2anc RFrSeAXAχn=sucmp=sucniωsucipn=suciGi=fi
53 3 4 bnj958 Gi=fiyGi=fi
54 53 bnj956 Gi=fiyGipredyAR=yfipredyAR
55 54 eqeq2d Gi=fiGsuci=yGipredyARGsuci=yfipredyAR
56 52 55 syl RFrSeAXAχn=sucmp=sucniωsucipn=suciGsuci=yGipredyARGsuci=yfipredyAR
57 30 56 mpbird RFrSeAXAχn=sucmp=sucniωsucipn=suciGsuci=yGipredyAR