Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj966.3 | |
|
bnj966.10 | |
||
bnj966.12 | |
||
bnj966.13 | |
||
bnj966.44 | |
||
bnj966.53 | |
||
Assertion | bnj966 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj966.3 | |
|
2 | bnj966.10 | |
|
3 | bnj966.12 | |
|
4 | bnj966.13 | |
|
5 | bnj966.44 | |
|
6 | bnj966.53 | |
|
7 | 6 | fnfund | |
8 | 7 | 3adant3 | |
9 | opex | |
|
10 | 9 | snid | |
11 | elun2 | |
|
12 | 10 11 | ax-mp | |
13 | 12 4 | eleqtrri | |
14 | funopfv | |
|
15 | 8 13 14 | mpisyl | |
16 | simp22 | |
|
17 | simp33 | |
|
18 | bnj551 | |
|
19 | 16 17 18 | syl2anc | |
20 | suceq | |
|
21 | 20 | eqeq2d | |
22 | 21 | biimpac | |
23 | 22 | fveq2d | |
24 | fveq2 | |
|
25 | 24 | bnj1113 | |
26 | 3 25 | eqtrid | |
27 | 26 | adantl | |
28 | 23 27 | eqeq12d | |
29 | 16 19 28 | syl2anc | |
30 | 15 29 | mpbid | |
31 | 5 | 3adant3 | |
32 | 1 | bnj1235 | |
33 | 32 | 3ad2ant1 | |
34 | 33 | 3ad2ant2 | |
35 | simp23 | |
|
36 | 31 34 35 17 | bnj951 | |
37 | 2 | bnj923 | |
38 | 1 37 | bnj769 | |
39 | 38 | 3ad2ant1 | |
40 | simp3 | |
|
41 | 39 40 | bnj240 | |
42 | vex | |
|
43 | 42 | bnj216 | |
44 | 43 | adantl | |
45 | 41 44 | syl | |
46 | bnj658 | |
|
47 | 46 | anim1i | |
48 | df-bnj17 | |
|
49 | 47 48 | sylibr | |
50 | 4 | bnj945 | |
51 | 49 50 | syl | |
52 | 36 45 51 | syl2anc | |
53 | 3 4 | bnj958 | |
54 | 53 | bnj956 | |
55 | 54 | eqeq2d | |
56 | 52 55 | syl | |
57 | 30 56 | mpbird | |