Metamath Proof Explorer


Theorem brenOLD

Description: Obsolete version of bren as of 23-Sep-2024. (Contributed by NM, 15-Jun-1998) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion brenOLD ABff:A1-1 ontoB

Proof

Step Hyp Ref Expression
1 encv ABAVBV
2 f1ofn f:A1-1 ontoBfFnA
3 fndm fFnAdomf=A
4 vex fV
5 4 dmex domfV
6 3 5 eqeltrrdi fFnAAV
7 2 6 syl f:A1-1 ontoBAV
8 f1ofo f:A1-1 ontoBf:AontoB
9 forn f:AontoBranf=B
10 8 9 syl f:A1-1 ontoBranf=B
11 4 rnex ranfV
12 10 11 eqeltrrdi f:A1-1 ontoBBV
13 7 12 jca f:A1-1 ontoBAVBV
14 13 exlimiv ff:A1-1 ontoBAVBV
15 f1oeq2 x=Af:x1-1 ontoyf:A1-1 ontoy
16 15 exbidv x=Aff:x1-1 ontoyff:A1-1 ontoy
17 f1oeq3 y=Bf:A1-1 ontoyf:A1-1 ontoB
18 17 exbidv y=Bff:A1-1 ontoyff:A1-1 ontoB
19 df-en =xy|ff:x1-1 ontoy
20 16 18 19 brabg AVBVABff:A1-1 ontoB
21 1 14 20 pm5.21nii ABff:A1-1 ontoB