| Step |
Hyp |
Ref |
Expression |
| 1 |
|
broutsideof2 |
|
| 2 |
|
simpl |
|
| 3 |
|
simpr3 |
|
| 4 |
|
simpr1 |
|
| 5 |
|
btwndiff |
|
| 6 |
2 3 4 5
|
syl3anc |
|
| 7 |
6
|
adantr |
|
| 8 |
|
df-3an |
|
| 9 |
|
3anass |
|
| 10 |
|
simpr3 |
|
| 11 |
10
|
necomd |
|
| 12 |
|
simp1 |
|
| 13 |
|
simp23 |
|
| 14 |
|
simp22 |
|
| 15 |
|
simp21 |
|
| 16 |
|
simp3 |
|
| 17 |
|
simpr1r |
|
| 18 |
12 14 15 13 17
|
btwncomand |
|
| 19 |
|
simpr2 |
|
| 20 |
12 13 14 15 16 18 19
|
btwnexch3and |
|
| 21 |
11 20 19
|
3jca |
|
| 22 |
8 9 21
|
syl2anbr |
|
| 23 |
22
|
expr |
|
| 24 |
23
|
an32s |
|
| 25 |
24
|
reximdva |
|
| 26 |
7 25
|
mpd |
|
| 27 |
26
|
expr |
|
| 28 |
|
simpr2 |
|
| 29 |
|
btwndiff |
|
| 30 |
2 28 4 29
|
syl3anc |
|
| 31 |
30
|
adantr |
|
| 32 |
|
3anass |
|
| 33 |
|
simpr3 |
|
| 34 |
33
|
necomd |
|
| 35 |
|
simpr2 |
|
| 36 |
|
simpr1r |
|
| 37 |
12 13 15 14 36
|
btwncomand |
|
| 38 |
12 14 13 15 16 37 35
|
btwnexch3and |
|
| 39 |
34 35 38
|
3jca |
|
| 40 |
8 32 39
|
syl2anbr |
|
| 41 |
40
|
expr |
|
| 42 |
41
|
an32s |
|
| 43 |
42
|
reximdva |
|
| 44 |
31 43
|
mpd |
|
| 45 |
44
|
expr |
|
| 46 |
27 45
|
jaod |
|
| 47 |
|
simprr1 |
|
| 48 |
|
simpll |
|
| 49 |
|
simplr1 |
|
| 50 |
|
simplr2 |
|
| 51 |
|
simpr |
|
| 52 |
|
simprr2 |
|
| 53 |
48 49 50 51 52
|
btwncomand |
|
| 54 |
|
simplr3 |
|
| 55 |
|
simprr3 |
|
| 56 |
48 49 54 51 55
|
btwncomand |
|
| 57 |
|
btwnconn2 |
|
| 58 |
48 51 49 50 54 57
|
syl122anc |
|
| 59 |
58
|
adantr |
|
| 60 |
47 53 56 59
|
mp3and |
|
| 61 |
60
|
expr |
|
| 62 |
61
|
an32s |
|
| 63 |
62
|
rexlimdva |
|
| 64 |
46 63
|
impbid |
|
| 65 |
64
|
pm5.32da |
|
| 66 |
|
df-3an |
|
| 67 |
|
df-3an |
|
| 68 |
65 66 67
|
3bitr4g |
|
| 69 |
1 68
|
bitrd |
|