| Step | Hyp | Ref | Expression | 
						
							| 1 |  | broutsideof2 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( P OutsideOf <. A , B >. <-> ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) ) | 
						
							| 2 |  | simpl |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> N e. NN ) | 
						
							| 3 |  | simpr3 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) | 
						
							| 4 |  | simpr1 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> P e. ( EE ` N ) ) | 
						
							| 5 |  | btwndiff |  |-  ( ( N e. NN /\ B e. ( EE ` N ) /\ P e. ( EE ` N ) ) -> E. c e. ( EE ` N ) ( P Btwn <. B , c >. /\ P =/= c ) ) | 
						
							| 6 | 2 3 4 5 | syl3anc |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> E. c e. ( EE ` N ) ( P Btwn <. B , c >. /\ P =/= c ) ) | 
						
							| 7 | 6 | adantr |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P ) /\ A Btwn <. P , B >. ) ) -> E. c e. ( EE ` N ) ( P Btwn <. B , c >. /\ P =/= c ) ) | 
						
							| 8 |  | df-3an |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ c e. ( EE ` N ) ) <-> ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ c e. ( EE ` N ) ) ) | 
						
							| 9 |  | 3anass |  |-  ( ( ( ( A =/= P /\ B =/= P ) /\ A Btwn <. P , B >. ) /\ P Btwn <. B , c >. /\ P =/= c ) <-> ( ( ( A =/= P /\ B =/= P ) /\ A Btwn <. P , B >. ) /\ ( P Btwn <. B , c >. /\ P =/= c ) ) ) | 
						
							| 10 |  | simpr3 |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ c e. ( EE ` N ) ) /\ ( ( ( A =/= P /\ B =/= P ) /\ A Btwn <. P , B >. ) /\ P Btwn <. B , c >. /\ P =/= c ) ) -> P =/= c ) | 
						
							| 11 | 10 | necomd |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ c e. ( EE ` N ) ) /\ ( ( ( A =/= P /\ B =/= P ) /\ A Btwn <. P , B >. ) /\ P Btwn <. B , c >. /\ P =/= c ) ) -> c =/= P ) | 
						
							| 12 |  | simp1 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ c e. ( EE ` N ) ) -> N e. NN ) | 
						
							| 13 |  | simp23 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ c e. ( EE ` N ) ) -> B e. ( EE ` N ) ) | 
						
							| 14 |  | simp22 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ c e. ( EE ` N ) ) -> A e. ( EE ` N ) ) | 
						
							| 15 |  | simp21 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ c e. ( EE ` N ) ) -> P e. ( EE ` N ) ) | 
						
							| 16 |  | simp3 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ c e. ( EE ` N ) ) -> c e. ( EE ` N ) ) | 
						
							| 17 |  | simpr1r |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ c e. ( EE ` N ) ) /\ ( ( ( A =/= P /\ B =/= P ) /\ A Btwn <. P , B >. ) /\ P Btwn <. B , c >. /\ P =/= c ) ) -> A Btwn <. P , B >. ) | 
						
							| 18 | 12 14 15 13 17 | btwncomand |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ c e. ( EE ` N ) ) /\ ( ( ( A =/= P /\ B =/= P ) /\ A Btwn <. P , B >. ) /\ P Btwn <. B , c >. /\ P =/= c ) ) -> A Btwn <. B , P >. ) | 
						
							| 19 |  | simpr2 |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ c e. ( EE ` N ) ) /\ ( ( ( A =/= P /\ B =/= P ) /\ A Btwn <. P , B >. ) /\ P Btwn <. B , c >. /\ P =/= c ) ) -> P Btwn <. B , c >. ) | 
						
							| 20 | 12 13 14 15 16 18 19 | btwnexch3and |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ c e. ( EE ` N ) ) /\ ( ( ( A =/= P /\ B =/= P ) /\ A Btwn <. P , B >. ) /\ P Btwn <. B , c >. /\ P =/= c ) ) -> P Btwn <. A , c >. ) | 
						
							| 21 | 11 20 19 | 3jca |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ c e. ( EE ` N ) ) /\ ( ( ( A =/= P /\ B =/= P ) /\ A Btwn <. P , B >. ) /\ P Btwn <. B , c >. /\ P =/= c ) ) -> ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) | 
						
							| 22 | 8 9 21 | syl2anbr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ c e. ( EE ` N ) ) /\ ( ( ( A =/= P /\ B =/= P ) /\ A Btwn <. P , B >. ) /\ ( P Btwn <. B , c >. /\ P =/= c ) ) ) -> ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) | 
						
							| 23 | 22 | expr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ c e. ( EE ` N ) ) /\ ( ( A =/= P /\ B =/= P ) /\ A Btwn <. P , B >. ) ) -> ( ( P Btwn <. B , c >. /\ P =/= c ) -> ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) ) | 
						
							| 24 | 23 | an32s |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P ) /\ A Btwn <. P , B >. ) ) /\ c e. ( EE ` N ) ) -> ( ( P Btwn <. B , c >. /\ P =/= c ) -> ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) ) | 
						
							| 25 | 24 | reximdva |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P ) /\ A Btwn <. P , B >. ) ) -> ( E. c e. ( EE ` N ) ( P Btwn <. B , c >. /\ P =/= c ) -> E. c e. ( EE ` N ) ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) ) | 
						
							| 26 | 7 25 | mpd |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P ) /\ A Btwn <. P , B >. ) ) -> E. c e. ( EE ` N ) ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) | 
						
							| 27 | 26 | expr |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( A =/= P /\ B =/= P ) ) -> ( A Btwn <. P , B >. -> E. c e. ( EE ` N ) ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) ) | 
						
							| 28 |  | simpr2 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) | 
						
							| 29 |  | btwndiff |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ P e. ( EE ` N ) ) -> E. c e. ( EE ` N ) ( P Btwn <. A , c >. /\ P =/= c ) ) | 
						
							| 30 | 2 28 4 29 | syl3anc |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> E. c e. ( EE ` N ) ( P Btwn <. A , c >. /\ P =/= c ) ) | 
						
							| 31 | 30 | adantr |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P ) /\ B Btwn <. P , A >. ) ) -> E. c e. ( EE ` N ) ( P Btwn <. A , c >. /\ P =/= c ) ) | 
						
							| 32 |  | 3anass |  |-  ( ( ( ( A =/= P /\ B =/= P ) /\ B Btwn <. P , A >. ) /\ P Btwn <. A , c >. /\ P =/= c ) <-> ( ( ( A =/= P /\ B =/= P ) /\ B Btwn <. P , A >. ) /\ ( P Btwn <. A , c >. /\ P =/= c ) ) ) | 
						
							| 33 |  | simpr3 |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ c e. ( EE ` N ) ) /\ ( ( ( A =/= P /\ B =/= P ) /\ B Btwn <. P , A >. ) /\ P Btwn <. A , c >. /\ P =/= c ) ) -> P =/= c ) | 
						
							| 34 | 33 | necomd |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ c e. ( EE ` N ) ) /\ ( ( ( A =/= P /\ B =/= P ) /\ B Btwn <. P , A >. ) /\ P Btwn <. A , c >. /\ P =/= c ) ) -> c =/= P ) | 
						
							| 35 |  | simpr2 |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ c e. ( EE ` N ) ) /\ ( ( ( A =/= P /\ B =/= P ) /\ B Btwn <. P , A >. ) /\ P Btwn <. A , c >. /\ P =/= c ) ) -> P Btwn <. A , c >. ) | 
						
							| 36 |  | simpr1r |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ c e. ( EE ` N ) ) /\ ( ( ( A =/= P /\ B =/= P ) /\ B Btwn <. P , A >. ) /\ P Btwn <. A , c >. /\ P =/= c ) ) -> B Btwn <. P , A >. ) | 
						
							| 37 | 12 13 15 14 36 | btwncomand |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ c e. ( EE ` N ) ) /\ ( ( ( A =/= P /\ B =/= P ) /\ B Btwn <. P , A >. ) /\ P Btwn <. A , c >. /\ P =/= c ) ) -> B Btwn <. A , P >. ) | 
						
							| 38 | 12 14 13 15 16 37 35 | btwnexch3and |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ c e. ( EE ` N ) ) /\ ( ( ( A =/= P /\ B =/= P ) /\ B Btwn <. P , A >. ) /\ P Btwn <. A , c >. /\ P =/= c ) ) -> P Btwn <. B , c >. ) | 
						
							| 39 | 34 35 38 | 3jca |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ c e. ( EE ` N ) ) /\ ( ( ( A =/= P /\ B =/= P ) /\ B Btwn <. P , A >. ) /\ P Btwn <. A , c >. /\ P =/= c ) ) -> ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) | 
						
							| 40 | 8 32 39 | syl2anbr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ c e. ( EE ` N ) ) /\ ( ( ( A =/= P /\ B =/= P ) /\ B Btwn <. P , A >. ) /\ ( P Btwn <. A , c >. /\ P =/= c ) ) ) -> ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) | 
						
							| 41 | 40 | expr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ c e. ( EE ` N ) ) /\ ( ( A =/= P /\ B =/= P ) /\ B Btwn <. P , A >. ) ) -> ( ( P Btwn <. A , c >. /\ P =/= c ) -> ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) ) | 
						
							| 42 | 41 | an32s |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P ) /\ B Btwn <. P , A >. ) ) /\ c e. ( EE ` N ) ) -> ( ( P Btwn <. A , c >. /\ P =/= c ) -> ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) ) | 
						
							| 43 | 42 | reximdva |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P ) /\ B Btwn <. P , A >. ) ) -> ( E. c e. ( EE ` N ) ( P Btwn <. A , c >. /\ P =/= c ) -> E. c e. ( EE ` N ) ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) ) | 
						
							| 44 | 31 43 | mpd |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P ) /\ B Btwn <. P , A >. ) ) -> E. c e. ( EE ` N ) ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) | 
						
							| 45 | 44 | expr |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( A =/= P /\ B =/= P ) ) -> ( B Btwn <. P , A >. -> E. c e. ( EE ` N ) ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) ) | 
						
							| 46 | 27 45 | jaod |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( A =/= P /\ B =/= P ) ) -> ( ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) -> E. c e. ( EE ` N ) ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) ) | 
						
							| 47 |  | simprr1 |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ c e. ( EE ` N ) ) /\ ( ( A =/= P /\ B =/= P ) /\ ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) ) -> c =/= P ) | 
						
							| 48 |  | simpll |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ c e. ( EE ` N ) ) -> N e. NN ) | 
						
							| 49 |  | simplr1 |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ c e. ( EE ` N ) ) -> P e. ( EE ` N ) ) | 
						
							| 50 |  | simplr2 |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ c e. ( EE ` N ) ) -> A e. ( EE ` N ) ) | 
						
							| 51 |  | simpr |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ c e. ( EE ` N ) ) -> c e. ( EE ` N ) ) | 
						
							| 52 |  | simprr2 |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ c e. ( EE ` N ) ) /\ ( ( A =/= P /\ B =/= P ) /\ ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) ) -> P Btwn <. A , c >. ) | 
						
							| 53 | 48 49 50 51 52 | btwncomand |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ c e. ( EE ` N ) ) /\ ( ( A =/= P /\ B =/= P ) /\ ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) ) -> P Btwn <. c , A >. ) | 
						
							| 54 |  | simplr3 |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ c e. ( EE ` N ) ) -> B e. ( EE ` N ) ) | 
						
							| 55 |  | simprr3 |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ c e. ( EE ` N ) ) /\ ( ( A =/= P /\ B =/= P ) /\ ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) ) -> P Btwn <. B , c >. ) | 
						
							| 56 | 48 49 54 51 55 | btwncomand |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ c e. ( EE ` N ) ) /\ ( ( A =/= P /\ B =/= P ) /\ ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) ) -> P Btwn <. c , B >. ) | 
						
							| 57 |  | btwnconn2 |  |-  ( ( N e. NN /\ ( c e. ( EE ` N ) /\ P e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( ( c =/= P /\ P Btwn <. c , A >. /\ P Btwn <. c , B >. ) -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) | 
						
							| 58 | 48 51 49 50 54 57 | syl122anc |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ c e. ( EE ` N ) ) -> ( ( c =/= P /\ P Btwn <. c , A >. /\ P Btwn <. c , B >. ) -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) | 
						
							| 59 | 58 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ c e. ( EE ` N ) ) /\ ( ( A =/= P /\ B =/= P ) /\ ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) ) -> ( ( c =/= P /\ P Btwn <. c , A >. /\ P Btwn <. c , B >. ) -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) | 
						
							| 60 | 47 53 56 59 | mp3and |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ c e. ( EE ` N ) ) /\ ( ( A =/= P /\ B =/= P ) /\ ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) ) -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) | 
						
							| 61 | 60 | expr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ c e. ( EE ` N ) ) /\ ( A =/= P /\ B =/= P ) ) -> ( ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) | 
						
							| 62 | 61 | an32s |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( A =/= P /\ B =/= P ) ) /\ c e. ( EE ` N ) ) -> ( ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) | 
						
							| 63 | 62 | rexlimdva |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( A =/= P /\ B =/= P ) ) -> ( E. c e. ( EE ` N ) ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) | 
						
							| 64 | 46 63 | impbid |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( A =/= P /\ B =/= P ) ) -> ( ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) <-> E. c e. ( EE ` N ) ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) ) | 
						
							| 65 | 64 | pm5.32da |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( ( ( A =/= P /\ B =/= P ) /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) <-> ( ( A =/= P /\ B =/= P ) /\ E. c e. ( EE ` N ) ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) ) ) | 
						
							| 66 |  | df-3an |  |-  ( ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) <-> ( ( A =/= P /\ B =/= P ) /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) | 
						
							| 67 |  | df-3an |  |-  ( ( A =/= P /\ B =/= P /\ E. c e. ( EE ` N ) ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) <-> ( ( A =/= P /\ B =/= P ) /\ E. c e. ( EE ` N ) ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) ) | 
						
							| 68 | 65 66 67 | 3bitr4g |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) <-> ( A =/= P /\ B =/= P /\ E. c e. ( EE ` N ) ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) ) ) | 
						
							| 69 | 1 68 | bitrd |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( P OutsideOf <. A , B >. <-> ( A =/= P /\ B =/= P /\ E. c e. ( EE ` N ) ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) ) ) |