Step |
Hyp |
Ref |
Expression |
1 |
|
broutsideof2 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( P OutsideOf <. A , B >. <-> ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) ) |
2 |
|
simpl |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> N e. NN ) |
3 |
|
simpr3 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) |
4 |
|
simpr1 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> P e. ( EE ` N ) ) |
5 |
|
btwndiff |
|- ( ( N e. NN /\ B e. ( EE ` N ) /\ P e. ( EE ` N ) ) -> E. c e. ( EE ` N ) ( P Btwn <. B , c >. /\ P =/= c ) ) |
6 |
2 3 4 5
|
syl3anc |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> E. c e. ( EE ` N ) ( P Btwn <. B , c >. /\ P =/= c ) ) |
7 |
6
|
adantr |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P ) /\ A Btwn <. P , B >. ) ) -> E. c e. ( EE ` N ) ( P Btwn <. B , c >. /\ P =/= c ) ) |
8 |
|
df-3an |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ c e. ( EE ` N ) ) <-> ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ c e. ( EE ` N ) ) ) |
9 |
|
3anass |
|- ( ( ( ( A =/= P /\ B =/= P ) /\ A Btwn <. P , B >. ) /\ P Btwn <. B , c >. /\ P =/= c ) <-> ( ( ( A =/= P /\ B =/= P ) /\ A Btwn <. P , B >. ) /\ ( P Btwn <. B , c >. /\ P =/= c ) ) ) |
10 |
|
simpr3 |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ c e. ( EE ` N ) ) /\ ( ( ( A =/= P /\ B =/= P ) /\ A Btwn <. P , B >. ) /\ P Btwn <. B , c >. /\ P =/= c ) ) -> P =/= c ) |
11 |
10
|
necomd |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ c e. ( EE ` N ) ) /\ ( ( ( A =/= P /\ B =/= P ) /\ A Btwn <. P , B >. ) /\ P Btwn <. B , c >. /\ P =/= c ) ) -> c =/= P ) |
12 |
|
simp1 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ c e. ( EE ` N ) ) -> N e. NN ) |
13 |
|
simp23 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ c e. ( EE ` N ) ) -> B e. ( EE ` N ) ) |
14 |
|
simp22 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ c e. ( EE ` N ) ) -> A e. ( EE ` N ) ) |
15 |
|
simp21 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ c e. ( EE ` N ) ) -> P e. ( EE ` N ) ) |
16 |
|
simp3 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ c e. ( EE ` N ) ) -> c e. ( EE ` N ) ) |
17 |
|
simpr1r |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ c e. ( EE ` N ) ) /\ ( ( ( A =/= P /\ B =/= P ) /\ A Btwn <. P , B >. ) /\ P Btwn <. B , c >. /\ P =/= c ) ) -> A Btwn <. P , B >. ) |
18 |
12 14 15 13 17
|
btwncomand |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ c e. ( EE ` N ) ) /\ ( ( ( A =/= P /\ B =/= P ) /\ A Btwn <. P , B >. ) /\ P Btwn <. B , c >. /\ P =/= c ) ) -> A Btwn <. B , P >. ) |
19 |
|
simpr2 |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ c e. ( EE ` N ) ) /\ ( ( ( A =/= P /\ B =/= P ) /\ A Btwn <. P , B >. ) /\ P Btwn <. B , c >. /\ P =/= c ) ) -> P Btwn <. B , c >. ) |
20 |
12 13 14 15 16 18 19
|
btwnexch3and |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ c e. ( EE ` N ) ) /\ ( ( ( A =/= P /\ B =/= P ) /\ A Btwn <. P , B >. ) /\ P Btwn <. B , c >. /\ P =/= c ) ) -> P Btwn <. A , c >. ) |
21 |
11 20 19
|
3jca |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ c e. ( EE ` N ) ) /\ ( ( ( A =/= P /\ B =/= P ) /\ A Btwn <. P , B >. ) /\ P Btwn <. B , c >. /\ P =/= c ) ) -> ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) |
22 |
8 9 21
|
syl2anbr |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ c e. ( EE ` N ) ) /\ ( ( ( A =/= P /\ B =/= P ) /\ A Btwn <. P , B >. ) /\ ( P Btwn <. B , c >. /\ P =/= c ) ) ) -> ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) |
23 |
22
|
expr |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ c e. ( EE ` N ) ) /\ ( ( A =/= P /\ B =/= P ) /\ A Btwn <. P , B >. ) ) -> ( ( P Btwn <. B , c >. /\ P =/= c ) -> ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) ) |
24 |
23
|
an32s |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P ) /\ A Btwn <. P , B >. ) ) /\ c e. ( EE ` N ) ) -> ( ( P Btwn <. B , c >. /\ P =/= c ) -> ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) ) |
25 |
24
|
reximdva |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P ) /\ A Btwn <. P , B >. ) ) -> ( E. c e. ( EE ` N ) ( P Btwn <. B , c >. /\ P =/= c ) -> E. c e. ( EE ` N ) ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) ) |
26 |
7 25
|
mpd |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P ) /\ A Btwn <. P , B >. ) ) -> E. c e. ( EE ` N ) ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) |
27 |
26
|
expr |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( A =/= P /\ B =/= P ) ) -> ( A Btwn <. P , B >. -> E. c e. ( EE ` N ) ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) ) |
28 |
|
simpr2 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) |
29 |
|
btwndiff |
|- ( ( N e. NN /\ A e. ( EE ` N ) /\ P e. ( EE ` N ) ) -> E. c e. ( EE ` N ) ( P Btwn <. A , c >. /\ P =/= c ) ) |
30 |
2 28 4 29
|
syl3anc |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> E. c e. ( EE ` N ) ( P Btwn <. A , c >. /\ P =/= c ) ) |
31 |
30
|
adantr |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P ) /\ B Btwn <. P , A >. ) ) -> E. c e. ( EE ` N ) ( P Btwn <. A , c >. /\ P =/= c ) ) |
32 |
|
3anass |
|- ( ( ( ( A =/= P /\ B =/= P ) /\ B Btwn <. P , A >. ) /\ P Btwn <. A , c >. /\ P =/= c ) <-> ( ( ( A =/= P /\ B =/= P ) /\ B Btwn <. P , A >. ) /\ ( P Btwn <. A , c >. /\ P =/= c ) ) ) |
33 |
|
simpr3 |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ c e. ( EE ` N ) ) /\ ( ( ( A =/= P /\ B =/= P ) /\ B Btwn <. P , A >. ) /\ P Btwn <. A , c >. /\ P =/= c ) ) -> P =/= c ) |
34 |
33
|
necomd |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ c e. ( EE ` N ) ) /\ ( ( ( A =/= P /\ B =/= P ) /\ B Btwn <. P , A >. ) /\ P Btwn <. A , c >. /\ P =/= c ) ) -> c =/= P ) |
35 |
|
simpr2 |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ c e. ( EE ` N ) ) /\ ( ( ( A =/= P /\ B =/= P ) /\ B Btwn <. P , A >. ) /\ P Btwn <. A , c >. /\ P =/= c ) ) -> P Btwn <. A , c >. ) |
36 |
|
simpr1r |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ c e. ( EE ` N ) ) /\ ( ( ( A =/= P /\ B =/= P ) /\ B Btwn <. P , A >. ) /\ P Btwn <. A , c >. /\ P =/= c ) ) -> B Btwn <. P , A >. ) |
37 |
12 13 15 14 36
|
btwncomand |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ c e. ( EE ` N ) ) /\ ( ( ( A =/= P /\ B =/= P ) /\ B Btwn <. P , A >. ) /\ P Btwn <. A , c >. /\ P =/= c ) ) -> B Btwn <. A , P >. ) |
38 |
12 14 13 15 16 37 35
|
btwnexch3and |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ c e. ( EE ` N ) ) /\ ( ( ( A =/= P /\ B =/= P ) /\ B Btwn <. P , A >. ) /\ P Btwn <. A , c >. /\ P =/= c ) ) -> P Btwn <. B , c >. ) |
39 |
34 35 38
|
3jca |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ c e. ( EE ` N ) ) /\ ( ( ( A =/= P /\ B =/= P ) /\ B Btwn <. P , A >. ) /\ P Btwn <. A , c >. /\ P =/= c ) ) -> ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) |
40 |
8 32 39
|
syl2anbr |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ c e. ( EE ` N ) ) /\ ( ( ( A =/= P /\ B =/= P ) /\ B Btwn <. P , A >. ) /\ ( P Btwn <. A , c >. /\ P =/= c ) ) ) -> ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) |
41 |
40
|
expr |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ c e. ( EE ` N ) ) /\ ( ( A =/= P /\ B =/= P ) /\ B Btwn <. P , A >. ) ) -> ( ( P Btwn <. A , c >. /\ P =/= c ) -> ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) ) |
42 |
41
|
an32s |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P ) /\ B Btwn <. P , A >. ) ) /\ c e. ( EE ` N ) ) -> ( ( P Btwn <. A , c >. /\ P =/= c ) -> ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) ) |
43 |
42
|
reximdva |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P ) /\ B Btwn <. P , A >. ) ) -> ( E. c e. ( EE ` N ) ( P Btwn <. A , c >. /\ P =/= c ) -> E. c e. ( EE ` N ) ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) ) |
44 |
31 43
|
mpd |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( ( A =/= P /\ B =/= P ) /\ B Btwn <. P , A >. ) ) -> E. c e. ( EE ` N ) ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) |
45 |
44
|
expr |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( A =/= P /\ B =/= P ) ) -> ( B Btwn <. P , A >. -> E. c e. ( EE ` N ) ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) ) |
46 |
27 45
|
jaod |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( A =/= P /\ B =/= P ) ) -> ( ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) -> E. c e. ( EE ` N ) ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) ) |
47 |
|
simprr1 |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ c e. ( EE ` N ) ) /\ ( ( A =/= P /\ B =/= P ) /\ ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) ) -> c =/= P ) |
48 |
|
simpll |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ c e. ( EE ` N ) ) -> N e. NN ) |
49 |
|
simplr1 |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ c e. ( EE ` N ) ) -> P e. ( EE ` N ) ) |
50 |
|
simplr2 |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ c e. ( EE ` N ) ) -> A e. ( EE ` N ) ) |
51 |
|
simpr |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ c e. ( EE ` N ) ) -> c e. ( EE ` N ) ) |
52 |
|
simprr2 |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ c e. ( EE ` N ) ) /\ ( ( A =/= P /\ B =/= P ) /\ ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) ) -> P Btwn <. A , c >. ) |
53 |
48 49 50 51 52
|
btwncomand |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ c e. ( EE ` N ) ) /\ ( ( A =/= P /\ B =/= P ) /\ ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) ) -> P Btwn <. c , A >. ) |
54 |
|
simplr3 |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ c e. ( EE ` N ) ) -> B e. ( EE ` N ) ) |
55 |
|
simprr3 |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ c e. ( EE ` N ) ) /\ ( ( A =/= P /\ B =/= P ) /\ ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) ) -> P Btwn <. B , c >. ) |
56 |
48 49 54 51 55
|
btwncomand |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ c e. ( EE ` N ) ) /\ ( ( A =/= P /\ B =/= P ) /\ ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) ) -> P Btwn <. c , B >. ) |
57 |
|
btwnconn2 |
|- ( ( N e. NN /\ ( c e. ( EE ` N ) /\ P e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( ( c =/= P /\ P Btwn <. c , A >. /\ P Btwn <. c , B >. ) -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) |
58 |
48 51 49 50 54 57
|
syl122anc |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ c e. ( EE ` N ) ) -> ( ( c =/= P /\ P Btwn <. c , A >. /\ P Btwn <. c , B >. ) -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) |
59 |
58
|
adantr |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ c e. ( EE ` N ) ) /\ ( ( A =/= P /\ B =/= P ) /\ ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) ) -> ( ( c =/= P /\ P Btwn <. c , A >. /\ P Btwn <. c , B >. ) -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) |
60 |
47 53 56 59
|
mp3and |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ c e. ( EE ` N ) ) /\ ( ( A =/= P /\ B =/= P ) /\ ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) ) -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) |
61 |
60
|
expr |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ c e. ( EE ` N ) ) /\ ( A =/= P /\ B =/= P ) ) -> ( ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) |
62 |
61
|
an32s |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( A =/= P /\ B =/= P ) ) /\ c e. ( EE ` N ) ) -> ( ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) |
63 |
62
|
rexlimdva |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( A =/= P /\ B =/= P ) ) -> ( E. c e. ( EE ` N ) ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) -> ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) |
64 |
46 63
|
impbid |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) /\ ( A =/= P /\ B =/= P ) ) -> ( ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) <-> E. c e. ( EE ` N ) ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) ) |
65 |
64
|
pm5.32da |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( ( ( A =/= P /\ B =/= P ) /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) <-> ( ( A =/= P /\ B =/= P ) /\ E. c e. ( EE ` N ) ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) ) ) |
66 |
|
df-3an |
|- ( ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) <-> ( ( A =/= P /\ B =/= P ) /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) ) |
67 |
|
df-3an |
|- ( ( A =/= P /\ B =/= P /\ E. c e. ( EE ` N ) ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) <-> ( ( A =/= P /\ B =/= P ) /\ E. c e. ( EE ` N ) ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) ) |
68 |
65 66 67
|
3bitr4g |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( ( A =/= P /\ B =/= P /\ ( A Btwn <. P , B >. \/ B Btwn <. P , A >. ) ) <-> ( A =/= P /\ B =/= P /\ E. c e. ( EE ` N ) ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) ) ) |
69 |
1 68
|
bitrd |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( P OutsideOf <. A , B >. <-> ( A =/= P /\ B =/= P /\ E. c e. ( EE ` N ) ( c =/= P /\ P Btwn <. A , c >. /\ P Btwn <. B , c >. ) ) ) ) |