Metamath Proof Explorer


Theorem btwnconn1lem9

Description: Lemma for btwnconn1 . Now, a quick use of transitivity to establish congruence on R Q and E D . (Contributed by Scott Fenton, 8-Oct-2013)

Ref Expression
Assertion btwnconn1lem9 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P R Q Cgr E D

Proof

Step Hyp Ref Expression
1 simp11 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N N
2 simp33 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N R 𝔼 N
3 simp32 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N Q 𝔼 N
4 simp2r3 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N E 𝔼 N
5 simp2l2 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N D 𝔼 N
6 simp2r1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N d 𝔼 N
7 simp31 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N P 𝔼 N
8 simpr3r E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P R Q Cgr R P
9 8 ad2antll N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P R Q Cgr R P
10 btwnconn1lem8 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P R P Cgr E d
11 1 2 3 2 7 4 6 9 10 cgrtrand N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P R Q Cgr E d
12 simp1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N N A 𝔼 N B 𝔼 N
13 simp2l N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N
14 simp2r N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N
15 12 13 14 3jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N
16 simpl A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B
17 simprl A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P E Btwn C c E Btwn D d
18 16 17 jca A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d
19 btwnconn1lem6 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d E D Cgr E d
20 15 18 19 syl2an N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P E D Cgr E d
21 1 2 3 4 5 4 6 11 20 cgrtr3and N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P R Q Cgr E D