Description: Inner connectivity law for betweenness. Theorem 5.3 of Schwabhauser p. 41. (Contributed by Scott Fenton, 9-Oct-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | btwnconn3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 | |
|
2 | simp3r | |
|
3 | simp2l | |
|
4 | btwndiff | |
|
5 | 1 2 3 4 | syl3anc | |
6 | simprlr | |
|
7 | 6 | necomd | |
8 | simpl1 | |
|
9 | simpl2l | |
|
10 | simpl2r | |
|
11 | simpr | |
|
12 | simpl3r | |
|
13 | simprrl | |
|
14 | 8 10 9 12 13 | btwncomand | |
15 | simprll | |
|
16 | 8 12 10 9 11 14 15 | btwnexch3and | |
17 | 8 9 10 11 16 | btwncomand | |
18 | simpl3l | |
|
19 | simprrr | |
|
20 | 8 18 9 12 19 | btwncomand | |
21 | 8 12 18 9 11 20 15 | btwnexch3and | |
22 | 8 9 18 11 21 | btwncomand | |
23 | 7 17 22 | 3jca | |
24 | 23 | ex | |
25 | btwnconn2 | |
|
26 | 8 11 9 10 18 25 | syl122anc | |
27 | 24 26 | syld | |
28 | 27 | expd | |
29 | 28 | rexlimdva | |
30 | 5 29 | mpd | |