Metamath Proof Explorer


Theorem cantnfcl

Description: Basic properties of the order isomorphism G used later. The support of an F e. S is a finite subset of A , so it is well-ordered by _E and the order isomorphism has domain a finite ordinal. (Contributed by Mario Carneiro, 25-May-2015) (Revised by AV, 28-Jun-2019)

Ref Expression
Hypotheses cantnfs.s S=domACNFB
cantnfs.a φAOn
cantnfs.b φBOn
cantnfcl.g G=OrdIsoEFsupp
cantnfcl.f φFS
Assertion cantnfcl φEWesuppFdomGω

Proof

Step Hyp Ref Expression
1 cantnfs.s S=domACNFB
2 cantnfs.a φAOn
3 cantnfs.b φBOn
4 cantnfcl.g G=OrdIsoEFsupp
5 cantnfcl.f φFS
6 suppssdm FsuppdomF
7 1 2 3 cantnfs φFSF:BAfinSuppF
8 5 7 mpbid φF:BAfinSuppF
9 8 simpld φF:BA
10 6 9 fssdm φFsuppB
11 onss BOnBOn
12 3 11 syl φBOn
13 10 12 sstrd φFsuppOn
14 epweon EWeOn
15 wess FsuppOnEWeOnEWesuppF
16 13 14 15 mpisyl φEWesuppF
17 ovexd φFsuppV
18 4 oion FsuppVdomGOn
19 17 18 syl φdomGOn
20 8 simprd φfinSuppF
21 20 fsuppimpd φFsuppFin
22 4 oien FsuppVEWesuppFdomGsuppF
23 17 16 22 syl2anc φdomGsuppF
24 enfii FsuppFindomGsuppFdomGFin
25 21 23 24 syl2anc φdomGFin
26 19 25 elind φdomGOnFin
27 onfin2 ω=OnFin
28 26 27 eleqtrrdi φdomGω
29 16 28 jca φEWesuppFdomGω