Description: Basic properties of the order isomorphism G used later. The support of an F e. S is a finite subset of A , so it is well-ordered by _E and the order isomorphism has domain a finite ordinal. (Contributed by Mario Carneiro, 25-May-2015) (Revised by AV, 28-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cantnfs.s | |
|
cantnfs.a | |
||
cantnfs.b | |
||
cantnfcl.g | |
||
cantnfcl.f | |
||
Assertion | cantnfcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cantnfs.s | |
|
2 | cantnfs.a | |
|
3 | cantnfs.b | |
|
4 | cantnfcl.g | |
|
5 | cantnfcl.f | |
|
6 | suppssdm | |
|
7 | 1 2 3 | cantnfs | |
8 | 5 7 | mpbid | |
9 | 8 | simpld | |
10 | 6 9 | fssdm | |
11 | onss | |
|
12 | 3 11 | syl | |
13 | 10 12 | sstrd | |
14 | epweon | |
|
15 | wess | |
|
16 | 13 14 15 | mpisyl | |
17 | ovexd | |
|
18 | 4 | oion | |
19 | 17 18 | syl | |
20 | 8 | simprd | |
21 | 20 | fsuppimpd | |
22 | 4 | oien | |
23 | 17 16 22 | syl2anc | |
24 | enfii | |
|
25 | 21 23 24 | syl2anc | |
26 | 19 25 | elind | |
27 | onfin2 | |
|
28 | 26 27 | eleqtrrdi | |
29 | 16 28 | jca | |