Metamath Proof Explorer


Theorem caofdi

Description: Transfer a distributive law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014)

Ref Expression
Hypotheses caofdi.1 φAV
caofdi.2 φF:AK
caofdi.3 φG:AS
caofdi.4 φH:AS
caofdi.5 φxKySzSxTyRz=xTyOxTz
Assertion caofdi φFTfGRfH=FTfGOfFTfH

Proof

Step Hyp Ref Expression
1 caofdi.1 φAV
2 caofdi.2 φF:AK
3 caofdi.3 φG:AS
4 caofdi.4 φH:AS
5 caofdi.5 φxKySzSxTyRz=xTyOxTz
6 5 adantlr φwAxKySzSxTyRz=xTyOxTz
7 2 ffvelcdmda φwAFwK
8 3 ffvelcdmda φwAGwS
9 4 ffvelcdmda φwAHwS
10 6 7 8 9 caovdid φwAFwTGwRHw=FwTGwOFwTHw
11 10 mpteq2dva φwAFwTGwRHw=wAFwTGwOFwTHw
12 ovexd φwAGwRHwV
13 2 feqmptd φF=wAFw
14 3 feqmptd φG=wAGw
15 4 feqmptd φH=wAHw
16 1 8 9 14 15 offval2 φGRfH=wAGwRHw
17 1 7 12 13 16 offval2 φFTfGRfH=wAFwTGwRHw
18 ovexd φwAFwTGwV
19 ovexd φwAFwTHwV
20 1 7 8 13 14 offval2 φFTfG=wAFwTGw
21 1 7 9 13 15 offval2 φFTfH=wAFwTHw
22 1 18 19 20 21 offval2 φFTfGOfFTfH=wAFwTGwOFwTHw
23 11 17 22 3eqtr4d φFTfGRfH=FTfGOfFTfH