Metamath Proof Explorer


Theorem caofid0l

Description: Transfer a left identity law to the function operation. (Contributed by NM, 21-Oct-2014)

Ref Expression
Hypotheses caofref.1 φAV
caofref.2 φF:AS
caofid0.3 φBW
caofid0l.5 φxSBRx=x
Assertion caofid0l φA×BRfF=F

Proof

Step Hyp Ref Expression
1 caofref.1 φAV
2 caofref.2 φF:AS
3 caofid0.3 φBW
4 caofid0l.5 φxSBRx=x
5 fnconstg BWA×BFnA
6 3 5 syl φA×BFnA
7 2 ffnd φFFnA
8 fvconst2g BWwAA×Bw=B
9 3 8 sylan φwAA×Bw=B
10 eqidd φwAFw=Fw
11 4 ralrimiva φxSBRx=x
12 2 ffvelcdmda φwAFwS
13 oveq2 x=FwBRx=BRFw
14 id x=Fwx=Fw
15 13 14 eqeq12d x=FwBRx=xBRFw=Fw
16 15 rspccva xSBRx=xFwSBRFw=Fw
17 11 12 16 syl2an2r φwABRFw=Fw
18 1 6 7 7 9 10 17 offveq φA×BRfF=F