Metamath Proof Explorer


Theorem caofidlcan

Description: Transfer a cancellation/identity law to the function operation. (Contributed by SN, 16-Oct-2025)

Ref Expression
Hypotheses caofref.1 φ A V
caofref.2 φ F : A S
caofcom.3 φ G : A S
caofidlcan.4 φ x S y S x R y = y x = 0 ˙
Assertion caofidlcan φ F R f G = G F = A × 0 ˙

Proof

Step Hyp Ref Expression
1 caofref.1 φ A V
2 caofref.2 φ F : A S
3 caofcom.3 φ G : A S
4 caofidlcan.4 φ x S y S x R y = y x = 0 ˙
5 2 ffvelcdmda φ w A F w S
6 3 ffvelcdmda φ w A G w S
7 5 6 jca φ w A F w S G w S
8 4 ralrimivva φ x S y S x R y = y x = 0 ˙
9 oveq1 x = F w x R y = F w R y
10 9 eqeq1d x = F w x R y = y F w R y = y
11 eqeq1 x = F w x = 0 ˙ F w = 0 ˙
12 10 11 bibi12d x = F w x R y = y x = 0 ˙ F w R y = y F w = 0 ˙
13 oveq2 y = G w F w R y = F w R G w
14 id y = G w y = G w
15 13 14 eqeq12d y = G w F w R y = y F w R G w = G w
16 15 bibi1d y = G w F w R y = y F w = 0 ˙ F w R G w = G w F w = 0 ˙
17 12 16 rspc2v F w S G w S x S y S x R y = y x = 0 ˙ F w R G w = G w F w = 0 ˙
18 8 17 mpan9 φ F w S G w S F w R G w = G w F w = 0 ˙
19 7 18 syldan φ w A F w R G w = G w F w = 0 ˙
20 19 ralbidva φ w A F w R G w = G w w A F w = 0 ˙
21 ovexd φ w A F w R G w V
22 21 ralrimiva φ w A F w R G w V
23 mpteqb w A F w R G w V w A F w R G w = w A G w w A F w R G w = G w
24 22 23 syl φ w A F w R G w = w A G w w A F w R G w = G w
25 5 ralrimiva φ w A F w S
26 mpteqb w A F w S w A F w = w A 0 ˙ w A F w = 0 ˙
27 25 26 syl φ w A F w = w A 0 ˙ w A F w = 0 ˙
28 20 24 27 3bitr4d φ w A F w R G w = w A G w w A F w = w A 0 ˙
29 2 feqmptd φ F = w A F w
30 3 feqmptd φ G = w A G w
31 1 5 6 29 30 offval2 φ F R f G = w A F w R G w
32 31 30 eqeq12d φ F R f G = G w A F w R G w = w A G w
33 fconstmpt A × 0 ˙ = w A 0 ˙
34 33 a1i φ A × 0 ˙ = w A 0 ˙
35 29 34 eqeq12d φ F = A × 0 ˙ w A F w = w A 0 ˙
36 28 32 35 3bitr4d φ F R f G = G F = A × 0 ˙